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Hardgrounds, those purported ancient lithified seafloor 
horizons1 (figure 1), are found throughout most of the 

Phanerozoic sedimentary record, and are perceived to be 
a challenge to Flood geology.  This is because of the long 
time alleged necessary for their formation, including the 
time required for the faunal ‘communities’ to establish, 
and the time for the surface to harden.2  This work explains 
hardgrounds in a Flood context, and is a sequel to the July 
2004 field study of Ordovician hardgrounds.3  Additional 
fieldwork was completed at the Caesar Creek site (figures 
2 and 3) in August 2005 by a team that included this author 
and Dr Whitmore.

In all geologic interpretation there is an element of 
subjective inference.  For example, a ‘Were you there?’ 
(Job 38:4) mode of thinking is exhibited by two bryozoan 
researchers,4 who comment:

‘In the narrowest sense, all paleoecologic studies are 
suspect because they involve inferences from skeletal 
morphologies and sedimentary structures rather than 
direct environmental observation, measurement or 
experiment.  Consequently, the difficulties inherent in 
paleoecologic studies often yield caveats, but they are 
not likely to deter paleontologists from their efforts 
to decipher the paleoenvironments of the geologic 
record.’
 Most hardground studies also seem to blur the 

line between interpretation and observation, leaving 
little room for alternative interpretations even within 
uniformitarianism, let alone beyond it.  Investigations 
of ancient hardgrounds confessedly ‘depend heavily on 
actualistic comparisons with hardgrounds from recent 
environments, particularly those of the Persian Gulf’.5  This 
means that hardgrounds are ‘read into’ the sedimentary 
record in part because they are expected to be there, and 
non-hardground interpretations are implicitly discouraged.  
Moreover, much thinking surrounding ancient hardgrounds 
suffers from overgeneralization,6 and the possibility of 
fortuitous coincidences7 of inferred hardground phenomena 
is usually overlooked.

Ironically, hardgrounds pose no less a time challenge to 
uniformitarianism than to diluvialism (interpretations based 
on the Genesis Flood):

‘It cannot be postulated, however, that these complex 
hardgrounds were exposed at the seafloor for geologically 
significant periods, despite the presence of hiatuses 
which must amount to several million years.  Each 
hardground contains a distinct assemblage of borings 
and other biological erosion and displays evidence of 
physical abrasion.  It is difficult to envisage how the 
characteristics of earlier surfaces would be preserved 
if they were exposed to physical and biological erosion 
at the seafloor for extended periods.’8

 The focus, from a creationist perspective, should 
be on the processes that created hardgrounds during the 
Flood year itself.  These include actual in situ hardgrounds 
formed in a matter of months during lulls in Flood action, 
as well as ‘hardgrounds’ that are actually the accumulations 
of allochthonous organisms.  The development of post-
Flood hardgrounds is also an issue that needs to be fully 
considered.  Although not otherwise considered in this 
paper, the encrusting and/or boring of siliclastic rocks,9 
termed rockgrounds, also needs further analysis.

Rethinking hardground phenomena 
in general

The student of hardgrounds is struck by their spatial 
and temporal variability.  Both boring-only hardgrounds,10,11 
and those that lack borings exist.12,13  Often, borings 
predominate statistically on topographic high spots while 
encrustings predominate on topographic low spots.14  In 
other hardgrounds, no such dichotomy exists.15  Encrusting 
faunal content, when present at all, can differ considerably 
from hardground to hardground even within the same 
geologic period.16,17  Surficial hardground topography varies 
greatly, ranging from highly-convoluted surfaces, as shown 
in hardground #4 in figure 2, to extremely smooth ones.18

Hardgrounds also vary greatly in complexity as can be 
seen by comparing figures 1 and 2.  While some hardgrounds 
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can supposedly be traced long distances, others peter out 
over tens to hundreds of meters.19  Out of 36 European 
Jurassic hardgrounds surveyed,20 only one-third is described 
as having a rich fauna of body fossils,21 and only about 30% 
of inferred shallow-shelf ones are mineralized.22  Composite 
hardgrounds such as that shown in figure 2 are ‘rather 
limited’ in frequency, at least in the English Cretaceous.23  
Hardground cobbles that show multiple generations of 
boring and encrusting are relatively uncommon,24 at least 
in the Jurassic of India.  The degree or even reality of 
ecological succession encountered on hardground clasts 
and ‘in situ’ hardground surfaces is debatable.25

As for the cryptobiontic (cavity-dwelling, sometimes 

called coelobiontic) hardground 
faunas that sometimes are found 
in the crevices of overhangs (see 
figures 1 and 2), there is only a 
weak polarization of upper and 
under-ledge faunas in Ordovician 
hardgrounds compared with those 
of the Jurassic.26  Most overhangs 
lack coelobionts, and when they 
do occur, the colonization of the 
undersides can be partial.27  Only 
13 of the 36 aforementioned 
surveyed Jurassic hardgrounds 
have cavities, and only some of 
their encrusting faunules exhibit 
polarization, which, to the extent 
it is real, points to the encrusters 
growing on the underside of a 
hardground ledge being somewhat 
different from those that grow on 
the upper side of the hardground 
surface.28

Cryptobiontic faunas are 
admittedly difficult to diagnose:

‘No single criterion, not 
even downward oriented skeletal 
growth, is definitive on its own of 
a coelobiontic habitat.’29

 Instead, a coincidence 
of clearly-defined cavities and 
upside-down organisms and 
borings is utilized.  However, 
once one recognizes the fact that 
only a vanishingly tiny fraction 
of Phanerozoic sedimentary 
rock contains cryptobionts as 
deduced from two or more 
ostensibly independent lines of 
evidence, fortuitous coincidences8 
o f  s u p p o s e d l y - d i a g n o s t i c 
cryptobiontic features assume 
major importance.  One cannot 

help but wonder how many so-called overhangs and 
cryptobiontic faunas are misinterpretations of other 
phenomena.30

Potential alternatives to ancient 
hardground lithification

All inferences of Phanerozoic hardgrounds rest on the 
premise that the surface in question was lithified at the time 
of inferred boring and/or inferred encrustation.  Criteria 
for this diagnosis are not agreed.31  The conventionally-
believed submarine cementation of alleged ancient 
seafloors is acknowledged to rely on circumstantial and 
negative evidence32 (and that within the narrow scope of 

Figure 1.  A schematized simple hardground in profile.  It includes an overhang with cavity-
dwelling (cryptobiontic) fauna and a sharp lithologic difference (facies change) above the 
hardground.

Figure 2.  A schematization of a composite hardground,89 with repeated deposition, lithification, 
encrustation, boring, erosion and mineralization.  There are five superposed hardground 
surfaces shown, each one prominently delineated by an erosionally-truncated set of borings 
and encrusters.
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uniformitarianism) that, moreover, is not unique to any 
specific microenvironment.33

With regard to the commonly-mentioned ‘sculpted’ 
hardground surfaces,34 once pre-hardground geologic 
interpretations allowed for firm, but not lithified, surfaces 
being sufficiently stiff for the generation of the ‘sculpted’ 
surfaces during erosion.35  In view of the fact that a large 
range of substrate stiffnesses are known to exist between 
compacted lime mud and fully-lithified material,36 one 
must ask if hard objects such as fossils, bioclasts or large 
carbonate grains found truncated flush with inferred 
hardground surfaces necessarily required a lithified, as 
opposed to firm, matrix in order to be cleanly cut by erosion.  
The flush truncation of the inferred hardground surface 
and its embedded fossils is thought to imply an equality of 
hardness of all constituents at the erosional surface.37  This 
premise should be tested experimentally, not assumed.38  
Flume experiments need to be conducted involving the rapid 
flow of water along carbonate surfaces of varying degrees 
of lithification, and in which objects of various hardnesses 
are embedded.

Just as soft-sediment ichnofossils can be misdiagnosed 
inorganic or body-fossils,39 so also can hardground ones, 
specifically borings.40  In fact, a precedent exists for 
questioning the boring and even organic origin of some 
ostensible Trypanites.41  Otherwise, the existence of 
distinctive and unique, sharp-edged, tapering, tube-shaped 

rohrenkarren42 (the product of condensation corrosion within 
air pockets in carbonates) is problematic.  The product of 
condensation corrosion within air pockets in carbonates 
disproves the common contention43 that inorganic structures, 
in contradistinction to biogenic ones, necessarily lack a 
self-consistent geometry.  Under the high-pressure and 
short-duration conditions of the Flood, many rohrenkarren 
could potentially have formed that fit the dimensions 
of Trypanites,44 and this would be most applicable to 
encruster-rare or Trypanites-only hardgrounds.45  Extending 
potential abiotic processes, one must ask if the diverse 
manifestations of apparent encrustation of Trypanites by 
bryozoan colonies46 could ever have a mechanical rather 
than a biological origin.47

Burrows in soft sediment are almost always constructed 
much more rapidly than borings in lithified sediment.  So 
how many burrowed horizons have been mistaken for bored 
ones?  At least some Petroxestes, as shown in figure 3 are 
probably burrows rather than borings, as they have lips of 
material at their margins, proving that the carbonate material 
was soft at the time of their construction.48  Following 
accepted burrow-boring distinctions, the lithified state 
of many inferred ancient hardgrounds is impossible to 
prove.49  Furthermore, it is now acknowledged that sharp 
margins of ichnofossils do not necessarily imply the lithified 
state of the penecontemporaneous surface.50  Moroever, 
any straightforward dichotomy between burrowing and 
boring activities is contradicted by the fact that some 
organisms can switch from burrowing to boring as they 
proceed downward.51  Hence the same modern organism 
can excavate a similar burrow and boring structure.52  One 
must ask if the clean truncation of hard objects such as large 
carbonate grains, intraclasts or fossils at the holes’ margins 
necessarily proves that the entire holed limestone layer was 
lithified at the time of the excavation of the holes or if the 
hardness of the object itself is a sufficient explanation for 
this observation.53

Ironically, one of the criteria claimed to discriminate 
burrows from borings implies that some Trypanites, notably 
those that hole bryozoans, as shown in figure 4, are actually 
burrows and not borings.  Only burrows are supposed to 
show changes in direction that imply the tracemaker’s 
avoidance of a hard obstruction.54  Yet there is an intriguing 
Trypanites that holes a bryozoan and then turns 90o to avoid 
a subjacent intraclast.55  Perhaps the tracemaker probed for 
a weak spot56 in the bryozoan’s skeleton, and then burrowed 
rather than bored through it.

We now turn our attention to alleged obligate hard-
surface encrusting organisms.  Assuming that they are 
actually in situ and self-cemented to the substrate, how can 
one be certain that fossil encrusters necessarily required a 
hard substrate?  Smith57 raises cautions about inferences of 
the habits of extinct bryozoans that rest on comparison with 
their modern counterparts, and warns that interpretations are 

Figure 3.  A Petroxestes-bearing hardground from the Cincinnatian 
(Ordovician) of Ohio, USA, occurring on top of a storm-deposited 
decimeter-thick limestone-shale couplet.  The subjacent thin shale 
layer had been eroded away, and a brachiopod coquina occurs 
on top of the subjacent couplet.
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especially tenuous for the Paleozoic fauna.  Parenthetically, 
the recommended practice of using multiple criteria to 
justify interpretations does not consider the problem of 
fortuitous coincidences,8 leading to at least an element of 
reinforced circular reasoning.58  Interestingly, Hageman 
et al.59 refuse to include the type of substrate as a formal 
bryozoan character class because:

‘First, it is not a morphological characteristic and 
therefore invites circularity in ecological interpretations.  
Secondly, this character can usually only be determined 
with confidence by direct observation from live 
material.’
 Some ‘Were you there?’ (Job 38:4) thinking is 

evident here!
Let us move beyond hardground cementation to the 

subject of mineralization.  Are mineralizations that are 
found on many hardground surfaces necessarily limited 
to previously lithified surfaces, subaqueous conditions 
and long periods of time?  The ferruginous crusts found in 
certain hardgrounds have an origin from nonphotosynthetic 
bacteria.60  By contrast bacterial precipitation of iron and 
manganese accounts for other hardground mineralization.61  
To put this in perspective, our understanding of the bacterial 
role in mineralization is in its infancy.62  Finally, considering 
the fact that some iron-stained silicified hardground rinds 
formed diagenetically,63 one must ask if there is any firm 
line between synsedimentary and diagenetic processes.

‘Instant’ hardgrounds

Some hardgrounds could have formed during the 
Flood year itself by ‘normal’ processes.  Initial lithification 
of hardground crusts, at least those typical of oolitic 
hardgrounds, is known to take a few months or less.64  The 
rapidity of ancient hardground lithification is acknowledged 
to be indicated by the preservation of ephemeral features 
such as preserved ripple marks65 and soft-sediment 
burrows.66  To the extent that modern encrusting bryozoans 

are any guide, extinct encrusters needed little time to 
overgrow appreciable areas of carbonate surfaces during 
the Flood year.  Steginoporella can grow laterally up to 
11 cm annually,67 while some smaller bryozoans have 
quoted growth rates of up to 0.5 cm per day68 (sic), at 
least for brief periods of time.  A community consisting of 
numerous epibionts that overgrow each other (on plastic 
bottles, in the cited instance) formed in only 10 months.69  
Moreover, successive encrustation that exhibits faunal 
polarity reminiscent of that which occurs around inferred 
hardground overhangs has developed in a matter of several 
months on experimental substrates.70

Let us consider some modern rates of boring that occur 
in a variety of carbonates, beginning with boring echinoids.  
Echinus can bore at least 1 cm deep in limestone per year 
and even deeper into granite in one year71 while Eucidaris 
can bore even faster over brief periods of time.72  Some 
members of the boring clam Penitella73 and the boring 
bivalve Lithophaga74 can bore up to 3–5 cm deep into 
carbonate rock in one year, and comparable rates sometimes 
hold for the boring sponge Cliona,75 which has otherwise 
been known to bore an astonishing 2–8 cm in less than 220 
days!76  Otherwise, Lithophaga, a known borer of inferred 
ancient hardgrounds,77 can produce a visible mark on a 
shell, and presumably other relatively soft limestone, in a 
matter of days.78  Other borers can hole shells at a rate of 
0.2–0.5 mm/day.79  It appears that boring rates generally 
tend to be atypically high at the commencement of boring 
upon a surface,80 and to increase when the environment is 
disturbed81,82 or when the boring organism is injured.83  All 
have obvious relevance to Flood conditions.

In situations where encrusting organisms overgrow 
boreholes, it is unclear whether the boring and the 
overgrowth must necessarily occur successively.  A modern 
sponge was observed overgrowing some boring bivalves, 
yet the latter were still alive one year later.84  Based on the 
results of field experiments in the modern reef environment, 
Davies and Hutchings85 doubt the conventional premise 
that encrusting organisms necessarily inhibit or smother 
nearby borers.

In general, the biology of bioerosional processes is not 
well understood.86  Moreover, the entire foregoing discussion 
is necessarily limited, as very few boring organisms have 
been studied for individual ‘borehole-drilling’ rate.87  
Finally, we must remember that the extant biosphere is an 
impoverished remnant of the antediluvian biosphere.  In 
all likelihood, the world at the time of the Flood included 
organisms that could bore faster, and do so under more 
adverse conditions, than any extant carbonate borer.

Interestingly, some hardgrounds contain a profusion 
of small and narrow Trypanites recognizably indicative 
of time constraints on the boring action.88  I would argue 
that hardgrounds should be systematically surveyed and 
catalogued for the frequency of such occurrences.

Figure 4.  A hardground from the Cincinnatian (Ordovician) of 
Ohio, USA, that includes an encrusting bryozoan riddled with the 
boring Trypanites (US penny is 19 mm diameter).
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Conclusions

Conventional hardground-related thinking is so 
profoundly steeped in uniformitarianism that it takes a 
great deal of mental effort to free oneself from these mind-
squeezing boxes.  There are too many unsubstantiated 
premises behind conventional hardground thinking, and 
much paleoecological ‘folk wisdom’ has already been 
proven incorrect.  Clearly identifying hardgrounds within 
the Phanerozoic sedimentary rock is a rather subjective task, 
given the lack of clear criteria to define them and the large 
variability observed in the criteria used.  The traditional 
long-age assumption that hardgrounds were lithified at 
the time of the supposed borring and/or encrusting is 
found wanting.  There is insufficient evidence to assume 
that lithification is a necessary requirement for producing 
hardground features, there is evidence that suggests at least 
some supposed ‘borings’ were either inorganically produced 
or sediment burrowings.  The assumptions that lithification, 
boring and encrusting themselves require long periods to 
occur are problematic as well.  There are many examples 
where all three of these are contradicted in several instances.  
Therefore, actualistic interpretations of hardgrounds fail 
to rule out diluvial explanations, but there remain many 
unsolved puzzles associated with hardgrounds.  Thus, far 
from being an insuperable obstacle to Flood Geology, one 
must recognize the existence of a wide-open field of research 
initiatives that could reconcile Phanerozoic hardgrounds 
with the Universal Deluge.
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