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In the immediate wake of Darwin’s publication of his 
book postulating evolution, James Croll hypothesized 

that changes in the eccentricity of the earth’s orbit would 
result in less sunlight reaching the earth, which in turn 
would cause ice ages.1 That was in 1867. It wasn’t until 
the middle of the next century that the quantitative 
aspects of this hypothesis were worked out by a Serbian 
astronomer named Milutin Milankovitch.2 He came up 
with three sunlight cycles. These Milankovitch cycles 
result from the postulated variation in the amount of solar 
radiation reaching the earth’s surface due to the changing 
eccentricity of the earth’s orbit around the sun, axial tilt 
of the earth’s rotational axis relative to its plane of orbit 
around the sun, and precession or wobble of this axial 
tilt. They are created by the gravitational forces of the 
planets and the moon acting on 
the earth. Extrapolating from 
astronomical observations, 
the longest of these cycles is 
calculated to have a period of 
100,000 years. The other cycles 
have periods of approximately 
40,000 and 20,000 years.3

Conjectured Milankovitch 
cycles were long ignored or 
dismissed as a serious contender 
for the cause of ice ages because 
they were believed to provide 
insufficient variation in solar 
radiation to effect such changes. 
For  more than a  hundred 
years after Croll put forth his 
hypothesis, there seemed to be 
a dearth of—or, rather, total 
absence of—physical evidence to 
support their existence. However, 
they were resurrected as being 
a possible cause in 1976 when 
a group of scientists used them 

to explain variations in the oxygen isotope ratio content 
in fossil shells taken from two bottom cores (combined 
into “one” for analytical purposes) drilled in a Southern 
Hemispheric ocean basin.4

The core was not dated by anything like layer 
counting. A few key dates were assigned to layers by 
various means including an examination of their fossil 
content, radiocarbon dating, and consideration of a 
magnetic reversal. This was used to establish the dates 
at major intervals, with the assumption that there was a 
constant (or linear) slow rate of deposition between these 
bench marks. Sedimentation surges were not considered.5 
Then the carbonate (shell) content was sampled along the 
core at regular intervals. After processing the samples 
by physical and chemical means, the ratios of oxygen 
isotopes were determined by mass spectroscopy. The 

variance of these as a function of 
position (or “time”) along the core 
was subjected to standard signal 
processing Fourier analysis. 
Finally, comparison of the phases 
of the periods found in this 
data processing procedure as 
compared to those from tests 
done on radiolarians led to the 
insertion of time intervals (viz. 
25,000 and 4,000 years) for 
consistency sake. A time interval 
of 60,000 years was hypothesized 
as being missing at the top of the 
core. A geologic time extent of 
approximately 450,000 years was 
investigated.

This paper will focus on 
the validity of the old earth 
interpretation of the deep-sea 
core Milankovitch cycle data. It 
will do so by observing that there 
might be a nonlinear differential 
equation for a non-astronomical 
phys ica l  phenomenon  tha t 

On interpreting deep sea data as 
evidence of Milankovitch cycles
Barry Lee Woolley

A phenomenological approach is used to suggest a nonlinear differential equation capable of replicating the 
period ratios in all data sets currently attributed to Milankovitch cycles. In particular, Duffing equation predictions 
are compared to the deep sea data set that J. D. Hayes et al. hypothesized as being due to Milankovitch cycles in 
the Quarternary. While not settling on one particular mechanism for the generation of this data set, mechanical 
analogues are invoked for illustrative purposes. These suggest a rapid, catastrophic event of global nature on 
a necessarily spinning earth as the cause of the observed effects. 

Milutin Milankovitch (1879–1958) took James Croll’s 
1867 hypothesis (that ice ages were related to variation 
in the earth’s orbit) and made it quantitative. The 
resulting Milankovitch cycles have had their own cycles 
of scientific acceptability.
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w o u l d  r a p i d l y  g e n e r a t e 
Milankovitch cycle data. The 
observation follows from a 
phenomenological approach to 
the topic.

Phenomenological 
approach

The  in te rpre ta t ion  o f 
astronomical data has been 
controversial  in the past . 
For example, even though 
there existed a cumbersome 
geometrical method devised 
by the Greeks to explain the 
motion of the planets, Johannes 
Kepler (1571–1630) persisted 
in trying to find mathematical 
relationships in the database 
b u i l t  b y  Ty c h o  B r a h e ’s 
(1546–1601) observations of 
them. Kepler’s laws or, more 
accurately, his data-determined 
mathematical relationships 
were then instrumental in 
Isaac Newton’s (1643–1727) 
discovery of  the  laws of 
gravitation. Note that this major paradigm change from a 
burdensome explanation that could be made to work to a 
revolutionary simple one was brought about by first finding 
the mathematical relationships in the data set. So it has 
been for the particularly difficult problems of science.

Even today some refractory problems of science 
continue to have scientists working on their solutions 
using this methodology.6 This “phenomenological 
approach” seeks solely to mathematically describe 
the phenomenon under investigation, anticipating the 
future development of a theory corresponding to the 
mathematics. Hence a phenomenologist might look at the 
approximately 100,000, 40,000 and 20,000 year cycles 
purported to be due to Milankovitch cycles and ask if 
there weren’t a differential equation whose solutions 
would generate period ratios of 1 to 2 to 5 (or 1/5 to 2/5 
to 1, the case more likely to be observed).7 Here is where 
the challenge lies.

Selecting the base equation

Differential equations are often used by scientists 
to describe and predict physical phenomena. A single 
form of differential equation may describe a specific 
phenomenon in a variety of contexts. For example, 
the wave equation is used to describe waves in the 
atmosphere, in the oceans, in the earth’s interior—in most 
places where waves are found. Similarly, the so-called 

harmonic oscillator equation 
has application to the repetitive 
vibration of masses on springs, 
the small-amplitude motion 
of pendulums, the behavior of 
certain electrical circuits, etc. 
It applies to situations where 
oscillatory or repetitive motion 
is involved. A phenomenologist 
looking to describe a physical 
phenomenon would naturally 
take a look at whether or not 
a differential equation would 
be appropriate for the job. Of 
course he would have to look 
for one that was suitable to the 
physics and geometry suggested 
by his data set.8

If, for instance, it were known 
that a data set had a frequency 
associated with it, then it would 
be natural to consider both the 
wave equation and the harmonic 
oscillator equation as candidates 
to describe the phenomenon 
that produced it. The solution of 
physical or engineering problems 

involving either of these equations usually involves 
assuming a frequency dependence in the form of a harmonic 
function (i.e. either a sine or cosine function).9

If the wave equation were to have a frequency associated 
with it, it would come from either one of two potentially 
interrelated sources. It could come from the frequency 
associated with its propagation or it could come from the 
frequency of a resonance of this traveling wave between 
barriers. (There would have to be an integral number of 
half wavelengths of this wave being constrained between 
two wholly or partially reflecting barriers for a resonance 
to occur. This has to do with phase considerations for 
amplitude reinforcement.) 

As a somewhat relevant illustration of this, consider two 
concentric large radius cylinders with a rib joining them. 
Striking either of the cylinders at a certain frequency will 
cause a propagating flexural wave in it with that frequency. 
When this excitation reaches the rib, it too will be set into 
motion.10 This motion of the rib will become amplified 
into a resonance if the distance between the inner and 
outer cylinders (that is, the length of the rib) is an integral 
number of half wavelengths long for the flexural wave in 
the rib. That is, there will be a resonance of a traveling wave 
between two boundaries if its frequency is just right.

Knowing the resonance frequency in a data set, a 
phenomenologist would inquire about available wavespeeds 
in the medium associated with the set to determine what 
geometries would have to exist to generate the known 

Johannes Kepler used a phenomenological approach to 
devise his laws of planetary motion.
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resonance. Usually, however, there are a plethora of 
possibilities and the problem of perhaps missing the one 
that is relevant. So the use of a wave equation is likely to 
only serve as a reality check on the geometries associated 
with a resonance frequency. 

A harmonic oscillator equation would also have a 
frequency associated with it. However, any repetitive 
wave that it describes would have to have a variable speed 
associated with it. During part of its cycle the wave would 
slow down, even momentarily stop, before it reversed its 
direction.11 Physically this might be thought possible for a 
wave traveling in a medium between two barriers only if 
somehow there were a continuous and an overall drastic 
change in density in the medium through which it was 
traveling. (Elastic wavespeeds are often proportional to 
the inverse of the square root of the medium density.) Such 
conveniently extreme changes in density are rare, but it 
can be seen that any change in density would influence a 
modeler to consider dropping the simple use of the wave 
equation in favor of using the harmonic oscillator equation 
as a likely model for the physical situation.

Milankovitch cycles have three frequencies associated 
with them. Therefore a phenomenologist looking to describe 
Milankovitch cycles would have to look for an equation 
that was capable of having multiple frequencies associated 
with it. This clearly points to a nonlinear extension of the 
harmonic oscillator equation, a topic to be investigated after 
looking at the harmonic oscillator equation itself. 

The forced harmonic oscillator equation

Isaac Newton’s genius came up with the concept that 
force is equal to mass times acceleration. (His paradigm 
probing nature led him to conduct an experiment to see 
if the mass in this equation were the same as the mass 
postulated in his work on gravity.) In simple mathematical 
form, this can be written as F = ma. In the notation of 
differential equations for a simple one-dimensional 
problem this is F = m d2x/dt2, “x” being a distance 
measured from some reference point and “t” being time 
with the operator symbols indicating differential changes. 
Now consider a mass on a spring. If the mass is moved a 
distance x from its natural rest position, then the spring 
will exert a restoring force on it. That force may be 
proportional to the distance of its displacement, with the 
positive constant of proportionality symbolized as “k” 
(with a negative sign in front of it because it acts to restore 
the mass to its rest position). Hence –kx = m d2x/dt2 or, 
algebraically rearranging the equation, m d2x/dt2 + kx = 0. 
This is a linear equation and is easily solved by assuming 
x is proportional to a harmonic function. The equation is 
linear because it has x to the first power in it: it is called 
the harmonic oscillator equation.

However the restoring force may not simply be 
proportional to x. It may have additional terms like x3, 
x5, etc. in the expression that best describes it. (It will 
not have even powers of x in this expression because this 
would be unphysical: if the mass were above or below its 
rest position, the restoring force indicated by even powers 
would always be in the same direction rather than being 
a restoring force pushing up when the spring is extended 
below its rest position or pushing down when it is above this 
position.) In symbols the simplest extension of the above 
harmonic oscillator equation with an additional restoring 
force term is m d2x/dt2 + kx – ax3 = 0. The negative sign 
in front of the positive constant “a” being there for valid 
physical reasons and results from the theory of equations. 
Note that now there is an x3 or nonlinear term: this equation 
has no complete general harmonic solution. It is called the 
Duffing equation.

Now consider driving this harmonic oscillator by a 
force of amplitude “F” at an angular frequency of “ω”. The 
equation becomes 

                                        m
∂

∂

2

2

Φ

t
  + D  + k  – a = F cos  t3∂

∂

Φ
Φ Φ

t
ω

(where the position has been indicated by “Φ” instead of 
the more restrictive notation of “x”, and “cos” indicates the 
cosine function) which appears frequently in mechanics to 
describe not only masses on springs, but also such things 
as the forced motion of small amplitude pendulums, 
mechanical vibrations of clamped plates, etc. The relevance 
of this equation or the physical system it describes to the 
work here is that it displays responses with additional 
frequencies besides that of the forcing frequency. These 
are often fractions of the forcing frequency. (If the fractions 
are less than one, these are called subharmonics of the 
system. If the fractions are greater than one, they are called 
superharmonics of the physical system.) Indeed, just like 
the Milankovitch cycles, the forced Duffing equation 
displays prominent one half and one-fifth subharmonics. 
This is for most, if not all, problems of practical concern.12 
This makes it an ideal candidate for phenomenologically 
describing any physical system producing or exhibiting 
Milankovitch cycles.

Heuristic notations

It is possible that even a simple harmonic phenomenon 
could result in Duffing equation behavior (and, hence, give 
Milankovitch cycle results) if it were extensive enough. 
This can be illustrated by the following simple, yet perhaps 
unexpectedly relevant, example.

Consider a simple pendulum constituted by a mass 
“m” being swung back and forth, that is, from side to side, 
on a string of length “l”. As usual, assume that the weight 
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of the string is negligible compared to the mass at its end. 
Now have this pendulum swing in a plane. If the plane itself 
were to rotate at a steady angular velocity rate “ω,” then the 
equation that it obeys would be the following:13

                            + g sin  – l
t

∂

∂

2

2

Θ
θ ll   sin  cos 2ω θ θ

	 = forcing function

where “g” is the acceleration of gravity and “θ” is the angle 
from the rest position. Consulting the possible solutions of 
this equation in the position [theta] versus angular velocity 
space, it is found that for certain sets of forcing amplitudes 
on the mass and of angular accelerations, the solution for its 
motion will be an oscillation back and forth on either one 
of the two sides, with the mass never traversing through the 
rest position to the opposite side. 

If the trigonometric functions in the above equation 
were to be expanded in their infinite series expansions, 
retaining only the most dominant terms up to the quadratic 
order, then the above equation would be transformed into 
the following more revealing and familiar one.

l
t

l l  + (g  )  + [  /2 – g/6] 2 2 3∂

∂

2

2

Θ
– ω θ ω θ

	 = forcing function

That is, an equation that could give Milankovitch cycle 
results. By analogy it is possible to conceive of a harmonic 
phenomenon constrained by the atmosphere (or lithosphere 
or bathysphere) on a spinning earth that would produce 
Milankovitch cycle results.

Now at this point it is premature and probably 
counterproductive (and contrary to a phenomenological 
approach) to proclaim a single specific widespread 
harmonic phenomenon on the rotating earth as the one that 
produced the reputed Milankovitch cycle data. And even 
though it is suspected that the oxygen isotope ratio data 
was produced in the ocean (or bathysphere), the harmonic 
source may not have been in it. It could have been in the 
atmosphere or in the lithosphere (i.e. Earth’s rocky outer 
layer). It could have been some sort of physical resonance 
between atmospheric boundaries that may or may not exist 
today. It could have been a resonance in the lithosphere 
that was excited by convection currents deeper in the earth 
or by an extraterrestrial impact. It could have been a lot of 
things (e.g. things that directly affect the ocean core data 
like an unsuspected and undetected diagenetic effect, an 
uncompensated pressure-related habitat assumption, etc.), 
even some that have not yet been proposed.

Real data comparison

Consider the frequency data analysis that was presented 
in the 1976 seminal paper that spurred renewed interest in 

Milankovitch cycles. In it, two Fourier analysis values were 
found and combined to constitute the approximately 20,000 
year short Milankovitch cycle. These values were 19,500 
and 24,000 years. Two other Fourier analysis time intervals 
were taken into account to obtain the figure of approximately 
40,000 years for the intermediate Milankovitch cycle. They 
were 42,000 and 43,000 years. Finally, two Fourier analysis 
derived numbers were associated with the approximately 
100,000 year Milankovitch cycle. They were 106,000 and 
400,000 year cycles. Note that 58% of the cyclicity of the 
oxygen isotope ratio data was attributed to the 106,000 
year cycle, 27% to the 42,000 year cycle, and only 8% 
to the approximately 20,000 year cycle. This latter point 
about cyclicity was quite unexpected and disturbing: it 
was the opposite of what was originally calculated for the 
Milankovitch cycles, which had the strong cycle at about 
20,000 years and the weakest cycle at 100,000 years.

Now if the data were produced by a phenomenon 
following an equation of the Duffing type, then it would be 
expected from the one fifth subharmonic that five times the 
average of the nearly 20,000 year cycle would come close to 
reproducing the 106,000 year cycle, which it does (being off 
by 2.6%). Now consider the one half frequency (or two fifths 
period) subharmonic. Two times the approximately 20,000 
year average cycle is within 2.4% of the approximately 
40,000 average year cycle. Furthermore, from the experience 
gained from the data analysis of the experimental work 
following the Duffing equation mentioned12, data showing a 
period in the vicinity of 400,000 years comes as no surprise 
for a fundamental driving force with a period of 20,000 
years. This one twentieth ratio was seen in the referenced 
experimental data set. So a Duffing equation interpretation 
of the deep-sea oxygen isotope ratio data does quite well 
when frequency ratios are examined.

Two nearly identical weakly coupled harmonic systems will generate 
oscillations of energy between them at the difference (and also the 
sum) of their frequencies.
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Now what about relative magnitudes? If the data be 
interpreted in light of the author’s past experience with 
Duffing equation data, then the relative magnitudes of the 
three periods in the data set are reversed (in exactly the same 
manner they would be in a Milankovitch cycle interpretation 
of the data set). A discussion of the physical interpretation 
of this is presented in the next section. 

The existence of a 400,000 year period was just 
mentioned as being no surprise for a Duffing equation 
interpretation of the data. Its magnitude is expected to be 
at least equal in its influence on the data set to that of the 
40,000 year one. That it isn’t can probably be accounted for 
in large measure by the fact that the data set is only roughly 
12% longer than this period. 

A 60,000 year cycle corresponding to a one third 
subharmonic is sometimes seen; however it is usually much 
less pronounced than the least of the four other frequencies 
that have been discussed here. 

Data enhancement and interpretation

In the previous section it was noted that there were 
two high frequency, short period resonances of 19,500 
and 24,000 years in the oxygen isotope ratio data from the 
deep-sea cores. This might suggest there were two closely 
resonating and modally coupled physical systems (e.g. 
two ocean basins, two tectonic plates, both atmospheric 
hemispheres, etc.) that produced these period values. If 
it were assumed these were physically coupled, then the 
frequency of the modal coupling would be 104,000 years.14 

If this were really so, then the dominance of the long period 
Milankovitch cycle would not be such a mystery: the Fourier 
analysis would pick up this additional and additive modal 
coupling frequency effect.

It was also noted that there was both an unexpected 
relative prominence for the approximately 40,000 year 
Milankovitch cycle as well as a tight clustering (i.e. 
42,000 and 43,000 years) of the two close Fourier 
analysis values that went into making up this number. It is 
conjectured that the breadth of the one half subharmonic 
of the Duffing equation is large enough to smear or merge 
the expected in-phase 39,000 and 48,000 year cycles into 
an enhanced 42,000 year peak.15 This might help explain 
its prominence.

The insertion of time blocks in the 1976 seminal paper 
helped to enhance the Duffing equation interpretation of 
the period ratios in the data. So too, it is expected that any 
further signal processing (such as normalizing the data by 
a pre-Quartenary noise sample) will greatly strengthen the 
case put forth in this work; it is anticipated that this data 
enhancement will make frequency peaks sharper, frequency 
ratios more precise and closer to theoretical predictions, and 
the frequency spectrum closer to the theoretically predicted 
one. Furthermore, once the processing starts to take into 

account possible physical effects (like cut-off frequencies16), 
then it is anticipated that the complexity of the data’s origin 
will tend toward a consensus interpretation. 

Summary and conclusions

The identification of variations in the oxygen isotope 
ratios (from shells extracted from deep-sea cores) with 
Milankovitch cycles has involved chronology date fixing, 
the insertion of large blocks of time units to bring about 
phase relation consistency, signal processing manipulations, 
less than realistic assumptions on sedimentation rates, 
and other activities. Some of these have spawned many 
critical comments and arguments. Surprise relations in 
the data among the magnitudes attributed to the effects 
of the different Milankovitch cycle components has led 
to subsequent uniformitarian attempts to justify these 
quantitative discrepancies between expectations and 
evidence. These give the appearance of being attempted ad 
hoc fixes of the problem. In addition to these environmental 
feedback mechanisms of deficient appeal, there is the 
difficulty in applying the Milankovitch cycle hypothesis 
to other physical situations where a supposedly global 
phenomenon only shows up in certain localities and not in 
others where it should also appear.17 Somehow it appears 
that at least in some of the situations where a Milankovitch 
cycle hypothesis is invoked the physical explanation 
is incomplete or the mathematical tools applied to the 
problem are inadequate. Somehow it appears that a scientific 
paradigm has as its only recommendation the lack of a 
mathematical development sufficient to buttress a viable 
alternative. This paper seeks to correct that situation.

The deep-sea core Milankovitch cycle data appears to 
result from physical processes obeying the Duffing equation 
or an extension of it. Indeed, it has been conjectured herein 
that all physical effects generating data that can be taken 
as due to Milankovitch cycles can be obtained from other 
physical phenomena obeying the Duffing equation or an 
extension of it. It also appears that all physical processes 
and geometries that appear to be candidates for generating 
such data would occur in time envelopes that are probably 
several orders of magnitude less than that calculated by 
Milankovitch. (Looking at the wavespeeds and geometries 
available, forces the adoption of this general conclusion.)

The Duffing equation alternative put forth in this 
paper relies on a heuristic phenomenological approach 
guided by a historically-suggested paradigm. This reverse 
solution tack has the advantage of mathematical rigor at its 
onset. It has the reverse trait of all previous Milankovitch 
cycle work where existing physical evidence is given a 
theoretical basis.

Involved procedures for determining parameters for 
the nonlinear differential equation proffered in this paper, 
as well as related applications of this work to earth history, 
will be covered in future articles.
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Possible future work and considerations

The most general pertinent differential equation 
encompassing all phenomena currently attributed to 
Milankovitch cycles would be similar to the following 
one:

m  + D  + k  – a  +  b

= F cos t + 

3 5∂

∂

∂

∂

2

2

Φ Φ
Φ Φ Φ

t t
ω GG cos 2 tω

The addition of the extra spring constant and forcing term 
was not necessarily a guess. The trigonometric identity

x = (cos 3x + 33 1

4
  cos x)cos

first brought the one-third subharmonic to the attention of 
Duffing. (Cubing an assumed harmonic cosine function of 
time [as one would have to do in trying to solve the Duffing 
equation] would, due to the presence of the cosine term 
with three times the independent variable, automatically 
introduce a one third subharmonic in the solution. Here x 
would be taken as ωt.) The similar identity

x =  (cos 5x + 5 cos 5 1

16
33x + 10 cos x)cos

would, when the cosine function was used as an assumed 
solution form in the above relevant equation, introduce a 
one fifth subharmonic in addition to the one third one and 

the fundamental frequency. Other related mathematical 
and physical considerations suggested the extra terms to 
the author.

A single mode analytical solution model will fail to 
replicate the full spectrum of solutions in physical or 
electrical analogue cases. The artificiality of using sinusoids 
to model waves, the increased frequency spectrum of 
finite signals, the possible couplings due to noise (or a 
dynamically evolving system), the mathematical reliance 
on trigonometric identities assuming only sinusoidal 
functions as a guide to differential equation development 
for models, etc., are all considerations that should be taken 
into account when comparing theory to reality. There are 
other physical complications that may also exist in a real 
physical situation, such as amplitude jumps18 that have not 
been discussed in this paper which may appear in a real 
physical situation. These may account for the appearance 
of Milankovitch cycles in the Quarternary after their 
absence from the Cretaceous to the Tertiary. 
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