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Retreating Stage formation of gravel
sheets in south-central Asia
Michael J. Oard

Tall erosional remnants indicate rapid, continent-wide erosion, which is consistent with the Retreating Stage of the
Flood. While the floodwaters were retreating and eroding the continents, resistant rocks were transported long
distances, as has been documented for the United States. A similar pattern of coarse gravel transport is evident
in the mountains of south-central Asia. These areas are south of the Himalayas, north of the Tibetan Plateau,
all around the Tian Shan Mountains, southwest of the Zagros Mountains, and east of the Tibetan Plateau on
the west edge of the Sichuan basin. The character of the coarse gravel shed from the rising south-central Asian
mountains is best interpreted within the Retreating Stage of the Flood, which also implies that the Flood/post-

Flood boundary is in the very ‘late Cenozoic’ in this area, assuming the uniformitarian timescale.

uring the Retreating Stage of the Flood, continents and

mountains rose above the floodwaters while the ocean
basins and valleys sank, causing the waters to flow off the
continents (Psalm 104:6-9)."? During the Retreating Stage,
the runoff first caused sheet erosion as the continents rose,
which transformed progressively, starting at higher altitudes
first, into channelized flow. The channels were probably
relatively wide at first (c. 75 km wide), and by the end of the
Flood they were relatively narrow (c. 2 km wide). There is
abundant geomorphological evidence for this runoff event,
which occurred between Day 150 and 371 of the Flood,* but
the evidence is very difficult for uniformitarian scientists*
to explain.

An estimated average 0f2,500 to 5,000 m of sedimentary
rock was eroded from the entire Colorado Plateau during
this runoff event.’ This is also consistent with evidence
from many other continental areas of the world.®* Mounting
evidence is increasingly portraying the Retreating Stage of
the Flood as a period of continental erosion, so most of the
sedimentary rocks left behind were likely deposited during
the early part of the Flood, before Day 150, the Inundatory
Stage. The sediments eroded during the Retreating Stage
formed the thick continental-margin sedimentary rocks.

Continental erosion rapid

Floods often leave behind erosional remnants (figure 1).
Many erosional remnants were left behind during the
catastrophic Lake Missoula flood, such as Steamboat rock
at the upper end of Upper Grand Coulee (figure 2) and
Umatilla Rock, which splits the plunge pools seen at Dry
Falls, Washington, USA.” It therefore follows that, since
there are many tall erosional remnants on the continents that
could not have remained if erosion was slow over millions
of years, continental erosion had to be rapid.

Moreover, such erosional remnants would not last
millions of years, even under uniformitarian conditions,
because a vertical face erodes much faster than a horizontal
surface. Pazzaglia stated: “Erosion rates are most rapid
where slopes are steep.”® Twidale reinforced this statement:
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.. valleys incised in a new surface tend to
be relatively deep and steep-sided. ... It is safe to
predict, however, that with the passage of time, the
valleys will be widened, and that eventually they
will develop a narrow V-shaped cross section.”
Devils Tower, Wyoming, is a typical example. The
tower should be a pile of boulders in thousands of years,
especially since it is strongly jointed, and freeze-thaw
weathering should be aggressive. Rapid erosion during Flood
runoff is a more straightforward explanation.'®

Long distance transport of hard rocks

During the Retreating Stage, ostensibly erosion-
resistant rocks were eroded and transported great distances.
Where these eroded rocks are found on the surface, they
are called coarse gravel—a general term for rocks from
gravel up to boulder size. Less resistant rocks are pulverized
during transport and end up as finer-grained sediments
down-current in depositional areas, especially along the
continental margins. As the rocks were eroded and carried
down-current, they were rounded and their size decreased.
There could occasionally be so many fine-grained sediments
mixed in with the coarse gravel that the flow would have
been a type of mass flow, such as a turbidity current, debris
flow, or hyperconcentrated flow.

The long-distance transport of rocks has been well
documented in the United States. John Hergenrather, Peter
Klevberg, and I have shown that well-rounded quartzite
rocks, predominantly as surficial gravels, were transported
up to about 1,200 km east and about 650 km west of their
source in the western Rocky Mountains. '"!* Based on the
interfluve outcrops in central Texas, the Ogallala gravel has
been transported about 800 km from its nearest source in
central New Mexico. ' Resistant rocks, including chert,
quartz, and quartzite, eroded from the Appalachians, have
been transported long distances west, south, and east out
onto the surrounding lowlands. Some chert gravels have
been transported up to 800 km west of the Appalachians,
and some quartzite gravels have been found up to 1,000 km
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Figure 1. Erosional remnants (two arrowed) left after a flood in
South Africa.

south of the Appalachian source in Florida.?*?! Many other
areas in the United States show long-distance transport of
resistant rocks, such as: in the Rocky Mountains between
Arizona and Montana,? from the lower terrain of southwest
Arizona to the highest terrain of the southwest Colorado
Plateau, > and all around the Uinta Mountains in Utah and
Colorado.*

Similar pattern in south-central Asia

I have personally studied the main mountain ranges of
the United States, and since the Flood was global, I expect
similar patterns of long-distance transport of resistant
rocks elsewhere. However, [ would also expect significant
location-specific differences caused by the many variables
in the Flood, e.g. rock type, water flow regime, differential
tectonics, and topographic differences. This is what we
find concerning the literature on long-distance transport
of cobbles and boulders in the mountains of south-central
Asia (figure 3).
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Figure 2. Steamboat Rock, a 2.5-km?, 250-m-high erosional
remnant left over from the Lake Missoula flood in the upper Grand
Coulee, Washington, USA.

Gravel pattern south of the Himalayas

The Himalayas are the highest mountain range in
the world. The high elevations thought to result from
the collision and underthrusting of Asia by the Indian
subcontinent resulted in a thickened crust of highly uplifted
light material.>® This collision is said to have started about
65 million years ago—beginning of the Cenozoic within the
uniformitarian time scale—and continues today.>®

A continuous sheet of conglomerate around the southern
Himalayas was shed from the mountains. It is called the
Siwalik Formation and is dated as Late Cenozoic within
the uniformitarian time scale. There are sometimes many
kilometers of Cenozoic sediments underneath the Siwalik
Formation, with the thickest sediments closest to the
Himalayas. This formation was deposited along the north
edge of the deep foreland basin, where the Ganges River
now flows toward the east-southeast. It was from the
Siwalik Formation that scraps of the oldest ‘fossil man’,
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Figure 3. South-central and southeast Asia showing main geographic features.
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Ramapithicus, were found.?”” However, later discoveries of
more fossils showed that Ramapithicus was just a type of
extinct ape.”®

The Siwalik Formation is divided up into lower,
middle, and upper members. There is a general increase
in the sedimentary particle size with increasing elevation.
The lower member and most of the middle member are
composed of alternating shale, mudstone, siltstone, and
sandstone. The middle member has sections of conglomerate
up to 500 m thick, and the upper member is composed of
about 1,000 m of mostly conglomerate.

The formation can be thousands of meters thick. One
section adjacent to the western Himalayas is 3,400 m
thick.? In eastern Nepal, the upper Siwalik conglomerate
is up to 1,700 m thick,*® and is generally well rounded by
water action.

Evidence suggests paleocurrent directions are both
parallel and perpendicular to the Himalayas.>! Therefore, the
paleocurrents were most likely flowing off the mountains
and flowing parallel to the mountains.

The Siwalik Formation was deposited while the
Himalayas were being uplifted.’>** There has been much
erosion in the Himalayas, with some estimates up to about
10 km. The shed debris includes the Siwalik Formation,
which is sometimes overthrusted by the Lesser Himalayas,
indicating that deposition was syntectonic.** Therefore, the
major uplift of the Himalayas is thought to have been in the
late Cenozoic.

Uniformitarians typically say all this conglomerate
came from braided streams or a network of rivers flowing
from the Himalayas.*>*® However, the upper member of
the Siwalik Formation is hundreds of meters thick and
extends as a continuous sheet along the southern edge of
the Himalayas. This is very unlike braided stream deposits
today; they deposit a variety of sediment, from clay to
gravel, with rapid changes of facies (figure 4).

Figure 4. Braided river of the north fork of the Toutle River near
Mount St. Helens, Washington, USA.
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Gravel north of the Tibetan Plateau

The Tibetan Plateau is the highest plateau in the world,
with much of it above 5 km. It spans approximately 700,000
km?, or about the size of the state of Texas. The plateau
is supposedly buoyed up by thicker crust caused by the
Cenozoic collision of India with Asia. The Tibetan Plateau
is also a huge erosion surface that is remarkably level, but
strongly dissected.’”*® North of the Tibetan Plateau is the
relatively low and undeformed Tarim Basin.*

Just north of the Tibetan Plateau, in the foothills of the
Tarim Basin, is a thick deposit of Cenozoic sedimentary
rocks, the top of which is a thick sheet of conglomerate,*°
similar to the Siwalik Formation. The gravel sheet thins
northeast toward the center of the Tarim Basin. The rocks
are generally rounded with some boulders larger than 2 m,
and reach a maximum thickness of about 3,000 m. It is called
the Xiyu Formation and is also found along the northern
edge of the Tarim Basin adjacent to the Tian Shan Mountains
(see below). There are some coarse gravels above the Xiyu
Formation that are called the Gobi gravels; these continue
much farther eastward in China.

It is thought that much of the material was shed by
debris flows as the Tibetan Plateau uplifted and the Tarim
Basin sank in the late Cenozoic. The gravel close to the
mountains has been folded and uplifted after deposition,
indicating that the Xiyu Formation continued to be uplifted
during and after its emplacement. It is also admitted,
however, that the mechanism and timing of the uplift of the
Tibetan Plateau is controversial.

Gravels shed from the Tian Shan Mountains

The Tian Shan Mountains, meaning ‘the celestial
mountains’ in Chinese, extend 2,500 km east-west in central
Asia (figure 3). They are just north of the Tarim Basin and
border several countries, including China on the northwest.
The Tian Shan Mountains are intraplate mountains that rise
to a maximum height of 7,439 m. Despite being intraplate
mountains, they are also believed to have taken part in the
collision with India and so are shortening. This shortening is
predicted to be only about 10% in the Tian Shan Mountains
as a result of the collision with India because the Tian
Shan Mountains are about 1,700 km from the collision
zone. But recent GPS readings indicate that around 50% of
the shortening or plate convergence of south-central Asia
occurs in the Tian Shan Mountains!*' This anomalous result
indicates that more seems to be happening in south-central
Asia than just the claimed collision of India with Asia.

All around the Tian Shan Mountains there is a continuous
sheet of gravel like that found around the Himalayas and
the Tibetan Plateau. It is also called the Xiyu Formation,
and is widespread throughout central Asia.*> The gravels
around the Tian Shan Mountains, including the northern
Tarim Basin and the Junggar Basin to the east, are on top of
many kilometers of Cenozoic strata, much like the Siwalik
conglomerate and the gravels north of the Tibetan Plateau.®
The gravels are over 3,000 m thick at some locations and
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thin away from the mountain front.***> The rocks are said
to have been shed by powerful streams originating from the
mountains during Late Cenozoic uplift, becoming smaller
and more rounded away from the mountains. The gravel
near the mountain front, once deposited, was also caught
up into the mountain tectonics, being folded, uplifted, and
overthrust by the mountain front.***’

The Xiyu Formation has been dated anywhere from
Quaternary to Miocene, but the dates have changed many
times.*® It has also been dated to different ages in different
areas. One reason for the poor dating is that there are few
fossils in the formation, which is understandable within a
conglomerate. But a few fossils have been found, e.g. a
fossil horse that once gave a date of Plio-Pleistocene to the
Xiyu Formation in one area.* Researchers now seem to be
accepting the older dates and are leaning more toward a
Miocene date for the Xiyu Formation.

However, a Miocene date eliminates climate change as
the cause of the erosion that formed the Xiyu Formation.
This is because the large change of climate that caused
glacial and interglacial stages is not said to have started
until the late Pliocene, supposedly about 2.5 million years
ago. So, the gravel is now believed to have been shed during
tectonic uplift in the Late Cenozoic.

Gravels shed from the Zagros Mountains

The pattern of thick, widespread coarse gravel at the
base of other mountains occurs in south-central Asia, but I
will only point out a few observations since I do not possess
detailed information.

The Zagros Mountains of southwest Iran show the same
pattern of thinning upward sediments on the southwest
side that were shed from the rising Zagros Mountains.*
The Upper Bakhtiari Formation consists of a sheet of
conglomerate on top of fine-grained sediments of the
Lower Bakhtiari and Fars Formations. Thomas Oberlander
interprets the conglomerates as caused by violent erosion
from ‘streams’ unlike those of today;

“Massive conglomerates everywhere overlie
the Lower Bakhtiari formations along a strong
angular unconformity. Both the unconformity
and the nature of the succeeding deposits—the
Upper Bakhtiari formation—indicate a violent
upheaval of the entire mountain belt in the late
Pliocene. ... The Upper Bakhtiari formation is the
local product of the violent denudation of a near-
homogeneous orogenic system reaching from the
western Alps to the eastern Himalayas. Thus it is
hardly distinguishable from the nagelfiuh molasses
of Switzerland or the Siwalik beds of India. ...
the Bakhtiari conglomerate filled basins, flooded
through cols, blanketed the plain in front of the
orogen, and at present stands before and amid the
fold belt in commanding pink escarpments, buttes,
and mesas, having vertical faces frequently 1,500
feet high ... . It seems impossible that a load of such
tremendous bulk, lacking the rudest semblance of
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stratification, could have been delivered by streams
operating under the present climatic regime.”*°
Overlander’s observations indicate that thick sheet
gravels are even more widespread than in south-central Asia,
extending clear to the Alps.

Gravels in the Western Sichuan Basin

To the east of the Tibetan Plateau lies the deep Sichuan
Basin (figure 3). Thick conglomerates that were likely shed
to the east from the rise of the eastern Tibetan Plateau (Vern
Bissell, personal communication) lie on the western edge.
Figure 5 shows this gravel along a hiking trail to Mount
Qingcheng, Sichuan, China.

A -

Figure 5. Thick gravel in the western Sichuan Basin, China.

Discussion

It is likely long transported gravels are common around
most mountains of the world. In the United States, the gravel
is often transported many hundreds of kilometers away from
their mountain source. Unlike the United States, the south-
central Asia gravels are piled up the thickest in front of the
mountains and thin out toward the basin centers. This pattern
likely formed because the basins are relatively isolated by
mountain ranges relatively close to each other. It also seems
like the deepest paleovalleys are adjacent to the mountain
front, the location of the mountain range bounding fault,
and would catch the majority of the cobbles and boulders
shed during uplift.

That the conglomerate can be several thousand meters
thick and consist of a sheet hundreds and thousands of
kilometers long implies sheet deposition. The sheet pattern
is consistent with the Retreating Stage of the Flood as the
mountains rose and the intervening basins sank, just as stated
in Psalm 104:6-9.'3 If streams and rivers issuing from the
mountain front deposited the gravels, then the gravel would
accumulate locally. And just as Oberlander pointed out
above, the idea of streams depositing all this gravel seems
preposterous. So, the pattern of gravel accumulation around
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the mountains of south-central Asia provides more evidence
for the global extent of the Retreating Stage of the Flood.

Huge deposits of fine-grained sediment have been
deposited east of the high mountains of Tibet and western
China. Much of this material is considered loess (wind-
blown silt). One large area in central China is called the
Loess Plateau;®' the loess being over 150 m thick. There is
a large literature on this loess, the top of which is reworked
by occasional strong winds today. Chinese loess is beyond
the scope of this article, but there is so much of it that it
could easily represent the fine-grained pulverized rocks shed
from the rising mountains and transported long distances
into central and eastern China as the Flood currents drained
eastward off the high mountains.

Further implication for the Flood/post-Flood
boundary

I could not help but notice in this study that the mountain
uplifts and the accumulations of thick sheet gravels is dated
to the late Cenozoic. This seems to be a pattern all over the
world in the late Cenozoic.? Furthermore, the conglomerate
is often rounded by water action and consolidated, indicating
that water was running off the mountains and transporting
the coarse gravel long distances. The pattern fits the
Retreating Stage of the Flood so well, both in south-central
Asia and in the United States, that the only conclusion that I
can come up with is that the late Cenozoic in these areas is
from the Flood. Therefore, the Flood/post-Flood boundary
would be in the very late Cenozoic, assuming the geological
column for sake of argument.

Creationists who believe the Cenozoic or late Cenozoic
is post-Flood must postulate that most of the south-central
Asian mountains were uplifted and eroded by water to
deposit very thick sheets of conglomerate around the
mountains—all affer the Flood. It is not only the violent
activity after the Flood that must be explained, but also
how sheet gravels accumulated after the Flood. Such
sheet deposition implies sheet flow, which does not seem
possible on the continents after the Flood, let alone at the
highest post-Flood altitudes. I have found much geological
data that Cenozoic strata fit the expected pattern during
the Retreating Stage in many places on the continents.>>
There are significant challenges to this view from Cenozoic
paleontology and biogeography. However, there are many
unknowns in these fields. Regardless, how can all this
Cenozoic geological activity have happened after the Flood?

According to plate tectonics and catastrophic plate
tectonics (CPT), India is supposed to collide and cause
all the tectonics of south-central Asia in the Cenozoic. If
the CPT model is accurate, one would expect that such
long-traveled plates—not only the one that caused India
to crash into Asia, but also all plate movement during
the Cenozoic—would have manifested during the Flood.
So, even if we assume the geologic column and plate
tectonics, long-distance plate movement would be another
indication that the Cenozoic is not post-Flood, at least in
most locations.
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