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Salt magma and sediments interfingered
Stef J. Heerema and Gert-Jan H.A. van Heugten

Subterranean salt deposits interfinger with kilometres-thick sedimentary overburdens. Currently, the widely-accepted 
theory concerning salt diapirism is based on a supposed fluid-like behaviour of solid salt. However, creep experiments 
on NaCl are inadequate to explain horizontal displacements over distances of tens of kilometres. The overburden has 
also moved in a synchronic, fluid-like manner. However, solid overburden will not flow, but fracture. Therefore, synchronic 
flow of solid salt and solid rock is impossible.

Field and seismic observations suggest a rise of liquid salt within a fluidized overburden. It is therefore possible 
that today’s salt/sediment deposits found worldwide were formed as salt magma interfingered with watery mud 
synsedimentarily during Noah’s Flood.

Hydrothermal models concerning the genesis of salt layers do not address salt tectonics and, superficially, seem to 
be strengthened by this rise of liquid salt. However, it is highly likely that a flow of hot water would mix with the muddy 
overburden, preventing the formation of pure salt pillars. So, hydrothermal models are incapable of explaining salt tectonics.

Subterranean salt deposits can dome up kilometres high 
(e.g. in the East Texas Basin, figure 1). The structures are 

usually covered with layers of sedimentary rock. The pressure 
of this sedimentary overburden forced the salt into pillars 
and dykes. For instance, the European Permian Zechstein 
salt formation (‘dated’ 272–253 Ma) is commonly thought 
to have started rising after enough Triassic sediments were 
deposited (~200 Ma).

Sometimes, the salt even penetrates the overburden. One 
example is the Sigsbee structural high in the Gulf of Mexico 
(figure 2). This ductile behaviour of solid salt is known as 
‘diapirism’, ‘halokinesis’, and ‘salt tectonics’. Several salts 
are involved, e.g. NaCl (halite), CaSO4 (anhydrite), CaCO3 
(chalk), KCl (sylvite), MgCl2. (To avoid misunderstanding, 
where we refer to ‘salt’, we do not refer solely to NaCl, but 
to all ionic crystalline compounds naturally occurring in 
these salt formations.1)

Until the late 1980s, geologists normally described 
diapirism as a lava-lamp-like, buoyancy-driven process.2 
A lava lamp typically has one immiscible fluid rising while 
the other gives way. This movement is synchronous; it is 
driven by density contrasts and without stress or resistance. 
It was counter-intuitive to expect that solid salt and solid 
sedimentary rock had moved like this, since solid rock does 
not show fluid behaviour. Therefore, geologists rejected this 
model. Today, it is widely accepted that solid salt diapirism 
is mainly the result of differential loading, with buoyancy 
downgraded to secondary importance.

Hudec et al. wrote in 2007: “Salt is mechanically 
weak and flows like a fluid”.3 Figure 3 summarizes their 
explanation. We agree that most salt structures formed when 
conditions allowed salt to flow like a fluid. However, the 
question arises whether evidence supports the idea that solid 
salt can flow like a fluid.

Solid salt flow under significant pressure gradients

Solid salt flow is well-known from salt mines, where 
lithostatic pressure displaces the salt towards the atmospheric 
pressure inside the galleries and rooms. Lithostatic pressure 
increases by approximately 20 MPa per kilometre depth. 
Solid salt, or at least halite, becomes sensitive to creep under 
such huge pressure differences. This results in a displacement 
of a few centimetres per year. However, this movement is 
local, caused by the weight of the overburden leading to a 
local subsidence in the area directly above the mine only.4 
As the pressure gradient is limited to the mining area, the 
induced creep cannot influence the rest of the salt formation, 
which stretches out over thousands of square kilometres.

The creep behaviour of halite has been studied and tested, 
as it is deemed to be the key to salt tectonics. For example, 
Urai et al.5 gathered data from strain experiments on halite 
cylinders with a height of 300 mm and a diameter of 150 
mm. Testing several temperatures and humidities, the authors 
found wet halite was the most sensitive to creep. The data 
shows creep for wet halite at vertical stresses as low as 0.2 
MPa. As salt formations are dry (e.g. anhydrite) this is not 
representative. Creep within halite with a water content more 
representative for salt layers was found at differential stress 
upwards of 10 MPa at an increased temperature of 323 K 
(the tests showed that, the lower the temperature, the more 
differential stress is required to cause creep). The prolonged 
stress caused a shortening of the cylinder and an increase 
in the diameter.6 In other words, the vertical stress caused a 
horizontal orientated stress varying from the isotropic stress 
in the core (10 MPa) to zero at the edge of the cylinder. This 
differential stress in horizontal direction was applied over 
a radius of 75 mm, resulting in a mean pressure gradient 
of 133 MPa/m (10/0.075). However, can this phenomenon 
account for the huge displacements observed in subterranean 
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salt deposits? Gevantman et al. wrote concerning salt buried 
underneath overburden: “The mobility of rock salt is such 
that its original site of deposition may be as far as 25 km 
from the dome where it is presently found.”7 

Let us apply these cylinder strain experiments to a vertical 
cylinder with a radius of 25 km under a vertical stress of 20 
MPa. 20 MPa represents the pressure underneath a 1 km thick 
layer of sedimentary rock. The resulting differential stress in 
the horizontal direction is then applied over 25 km. The mean 
horizontal pressure gradient becomes 8×10–4 MPa/m, which 
is negligible compared to the tests at horizontal pressure 
gradients exceeding 133 MPa/m. The tests showed that 
with negligible pressure gradient there will 
be no creep. Even raising the differential 
loading factor by assuming additional kilo
metres of sediments were in place will 
not help. Therefore, the creep tests do not 
validate the idea that fluid-like behaviour 
of solid salt formed these salt structures.8

An overthrust of salt as far as 200 km 
on top of an overburden layer, as shown 
in figure 2, undermines the creep model 
even more.9 How can creep cause such an 
overthrust, without even the differential 
loading of sediments, as this salt has 
mainly flowed on top of the overburden? 
And, of course, any solid rock or ice can 
become part of a mass waste and slide 
slowly down like a glacier, but that system 
is unable to move rock upwards and 
sideways over more than 200 kilometres. 
Clearly, another approach is required.

Salt structures originated  
from magma

There is no modern analogue where 
a large salt formation is being formed, 
either hydrothermally via precipitation 
during supercritical phases, or from an 
igneous origin. The volume and area of 
salt layers are similar to those of large 
igneous provinces. They contain hundreds 
of thousands of cubic kilometres of 
material. Earlier publications suggested 
a primary igneous origin of salt,10,11 and 
challenge buoyancy-driven salt tectonics 
in solid rock.12,13 We embrace that, and 
suggest that a flow of molten salt brought 
up from the mantle by volcanic eruptions 
and deposited underneath muddy water 
explains the salt structures observed today. 
Salt with a temperature above its melting 
point becomes an ionic liquid: a fluid 

mixture of anions and cations.14 The relatively low density 
and melting point of such a salt magma can be estimated 
(table 1).

Salt formations are often covered with several kilometres 
of water-deposited sediments. Within the framework of 
biblical geologic history, these sediments were most likely 
deposited as the floodwaters were rising during the Flood.23–27 
If this overburden was solid when salt tectonics took place, 
the layers would have been fractured, which they are not.28

To understand the structures, we refer to the original 
experimental observation that salt domes must have been 
formed through a lava-lamp-like, buoyancy-driven process 

Figure 1. Salt structures present within the East Texas Basin. The Middle Jurassic salt layer 
interfingered with sedimentary rock. (From Jackson et al.38,39).

Figure 2. The Sigsbee Escarpment is the southern edge of an allochthonous sheet of Mid-
Jurassic Louann Salt in the Gulf of Mexico. It is displaced over 200 km southward from the 
position where the salt penetrated the overburden. Even if the displacement rate of the solid 
salt were relatively fast with several metres each year, it would not fit in a biblical timeframe. 
(After Universidade Fernando Pessoa.40).
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(figure 4). Therefore, the structures occurred when the salt was 
in a molten state and when the sediments were unconsolidated 
and water-soaked, allowing for hydrodynamic behaviour. 
Solid NaCl has a high viscosity, whereas molten NaCl has 
a viscosity of 1.29 × 10–3 Pa.s (at 1123 K), which is in the 
same order as the viscosity of water at room temperature.29 
Therefore, we propose that the ionic liquid could run like 
water. Low density combined with low viscosity would have 
facilitated rapid formation of pillars in watery sediments. 

Steam would have formed on the sides and tops of the 
pillars, where the molten salt came into direct contact with 
watery sediments. The higher the steam rose, the more it 
would have expanded. This must have led to additional 
gravitational effects per the law of communicating vessels 
(figure 5).

In this energetic environment, the outside of the pillars 
would have cooled and solidified rapidly. Additional eruptions 
would have fed the salt deposits from below and raised the 
pressure in the liquid core of the pillars. In this way, the pillars 
would have acted like chimneys, delivering the salt magma 
into allochthonous salt sheets on top of the overburden. 

Figure 3. Widely accepted understanding of solid diapir piercement during 
regional extension. Indeed, if salt deformed synsedimentarily as shown 
here, then salt must have flowed like a fluid. However, the model implies 
unnatural behaviour for a solid. (From Hudec and Jackson.3).

Hydrothermal models

Some modellers suggest most salt beds formed by 
precipitation of salt from supercritical water surrounding 
deep hydrothermal vents.30,31 However, this would form solid 
salt, which, as described above, could not flow over tens of 
kilometres. No hydrothermal model for salt beds addresses 
the mechanism of salt diapirism. Rather, we have shown that 
salt was most likely a fluid during the formation of salt pillars.

Hydrothermal models could benefit from that conclusion. 
However, if hot water were available underneath sediments, 
the sediments would fall in. The water would end up in the 
pore spaces and would not form layers of pure salt. Hot 
water cannot flow tens of kilometres underneath mud without 

Figure 4. A hydrodynamic model of how liquid salt interfingered with mud. 
This process has been suggested before41,42 and is valid only when the 
sediments and the salt magma acted synchronically in a fluid-like manner.
4a. A Rayleigh-Taylor instability as successively pictured in a test. This 
shows the hydrodynamics of two immiscible fluids of different densities. 
(After Los Alamos National Laboratory.43).
4b. Salt diapirs in the North Cape Basin (Norway). T.w.t. stands for two-
way-travel-time in seconds, which is seismic data. (From Universidade 
Fernando Pessoa.40).

4b

4a
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inmixing, whereas a magma flow would be isolated from 
the mud by a solidified skin. This skin would form out of 
solidifying magma on the inside, and out of sediments and 
minerals out of the watery mud on the outside.32 Such a skin 
would prevent the magma from becoming contaminated 
with mud or water. (Note that this immiscibility is essential 
for correctly referring to a Rayleigh-Taylor instability as 
shown in figure 4.) This skin in turn would act as a thermal 
insulator, causing the magma to stay liquid longer and thus be 
transported over long distances during the eruption.

Figure 4 is an example of how a pillar has been frozen 
on the move, understandable from a primary igneous origin. 
What mechanism will freeze a hydrothermal waterflow in the 
middle of wet sediments?

Where primary igneous salt is probably responsible 
for most salt beds, this salt magma might have induced 
hydrothermal deposits. Perhaps that is one of the reasons for 
the interpretations to date.

Timing

Salt formations worldwide are mostly covered with 
sediments with a catastrophic, watery origin. As salt magma 
and mud interfingered synchronously, the eruption of salt 
and the worldwide watery catastrophe must have taken place 
at the same time. This must have occurred rapidly, as it is 
unlikely that the magma would be thermally isolated in a way 
that would prevent solidification for years. Given that more 
than one worldwide watery catastrophe is ruled out by the 
covenant in Genesis 9, Noah’s Flood alone fits the evidence, 
as the floodwaters were rising.

More observations

We believe the above observations suffice to rule out 
an evaporative or hydrothermal origin for salt formations, 
supporting a primary igneous origin as the only plausible 
explanation available. However, there is more positive 

Table 1. Density of salt in liquid phase under atmospheric pressure. This configuration at around 1075 K has a weighted average density of 1800 kg/m3.15 
Note that in magma, high pressures are applicable, which will increase the density. Higher temperatures will lower the density. But lower temperatures 
are expected as the melting temperature of a mixture of NaCl and CaSO4 is as low as 998 K, and any other chemicals in the mixture will lower the melting 
point even further.16 This mechanism explains the temperatures of natrocarbonatite lava, which erupts with the lowest temperature lava in the world 
(~850 K). The Ol Doinyo Lengai volcano in Tanzania is an example.17

Salt
(commonly found in the 
formations)

Temperature (K) Density (liquid)
(kg/m3) Source

Estimated volume% of 
salt in magma (differs 
per formation)

NaCl         1077 1549 Robertson, 1958 18 65%

CaSO4         na 2502 * 19 20%

CaCO3         1073 2502 Liu, 2003 20 5%

KCl         1058 1517 Jaeger, 1917 21 5%

MgCl2         1077 1658 Janz, 1988 22 5%

Figure 5. The law of communicating vessels demands equilibrium between 
the weight of the multiple-kilometres-thick mud layer plus any water 
above it, and the weight of the salt/steam column within. As the density 
of steam is relatively low, it favours the rise of the salt pillar. This picture 
shows the moment the salt protrudes the mud in a sub-oceanic scenario.

evidence for a primary igneous origin for salt. Firstly, as 
mentioned, the volume, area and dryness of salt layers suggest 
a primary igneous origin, and this has been reported in earlier 
publications. Secondly, it is worth considering the following:
•	 Fossil fuels are found abundantly below and above salt 

structures. The Flood might explain how organic material 
was buried rapidly, whereas the heat of the salt magma 
explains the conversion into fuel. 

•	 Each salt pillar has a caprock containing mainly CaCO3 
and CaSO4. This might have been deposited by mineral-
rich Flood water that turned into steam by the contact with 
the raising pillar, see figure 5. 
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Also, hydrothermal models 
cannot explain salt diapirism as the 
hydrothermal water would have mixed 
with the muddy overburden, thus 
polluting the salt with sediments.

Evidence suggests the overburden 
and the salt both moved in a synchronic 
and fluid-like manner. Synchronic 
flow of solid salt and solid rock is 
impossible. Therefore, the empirical 
observations suggest the salt was 
liquid when it rose through a fluidized 
overburden at the time. The primary 
igneous origin of salt formations can 
be confirmed by the volume, area 
and dryness of salt layers. The idea 
of a massive volume of salt magma 
interfingered with water-saturated 
sediments conflicts with uniformitarian 
principles.37 Hence, the authors 
conclude that a high energy, short 
term event, such as Noah’s Flood, is 
responsible for the deposition of salt 
magmas interfingered with watery mud 
several kilometres thick.
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