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A biblical view restores reality to quantum 
mechanics
D. Russell Humphreys

In 1928, Niels Bohr published1 some of the ideas about 
quantum mechanics over which he and Einstein (figure 1) 

had their famous dispute at the 1927 Solvay conference in 
Brussels. Early in the paper Bohr wrote: “This [quantum] 
postulate implies a renunciation as regards the causal space-
time coordination of atomic processes.” Apparently, many 
theorists at the time took Bohr to mean that at least at the 
atomic scale, there can be no causal connection between two 
events with different spacetime coordinates. In particular, 
a particle could not have a definite trajectory between the 
points. He added: “Accordingly, an independent reality in 
the ordinary physical sense can neither be ascribed to the 
phenomena nor to the agencies of observation.” In con-
sidering situations in which the specific orbit or trajectory 
of a particle is important, Bohr said: “we are bound to use 
the general solution of the wave equation which is obtained 
by superposition of characteristic solutions.” Applying this 
to Heisenberg’s newly published uncertainty principle, Bohr 
implied that, before measurement, a freely moving particle is 
generally in a mixture of quantum states and therefore would 
have no definite momentum or position. Of importance for 
later discussions, notice that this indefiniteness would also 
include the orientation of the particle’s spin.

Biblical insight on the issue

We might expect the Bible to have something to say about 
whether the particles God created each have a definite exis-
tence (including position and velocity), or not. One verse 
is: “And there is no creature hidden from His sight, but all 

things are open and laid bare to the eyes of Him with whom 
we have to do” (Hebrews 4:13).

“All things” should include God’s tiniest creations, the 
subatomic and subnuclear particles. For them to be seen 
would require them to have definite locations, I would think. 
Furthermore, Bohr’s interpretation needs an observer to 
take note of a measurement before a particle can have a 
definite location or velocity. This verse says there is always 
an Observer who sees everything, even the smallest matter 
He created. Taken at face value, then, the Bible disagrees 
with Bohr’s interpretation of reality. Similar thoughts may 
have prompted Einstein to say to Bohr at the 1927 confer-
ence: “God does not play dice [to determine the outcome of 
an experiment] with the universe!” Bohr reportedly replied: 
“Einstein, stop telling God what to do!” It would be interest-
ing to hear what God might say on the matter, in addition to 
the verse above.

The controversy continues

In 1935, Einstein, Podolsky, and Rosen (EPR) took issue 
in print2 with Bohr’s ideas. They considered the case of two 
particles which are emitted simultaneously in opposite direc-
tions by a source, and then are measured with detectors far 
enough apart to disallow any interaction between them. Using 
standard quantum theory, EPR showed that a measurement 
of the momentum of one particle allows us to predict the 
momentum of the other particle. Or, if one detector deter-
mines the location of one particle, then we can predict the 
location of the other. According to EPR’s objective definition 

The conventional view of quantum mechanics denies that particles have a definite position, momentum, and spin direction 
before those have been measured. A minority view (Appendix A) asserts that a particle always has definite values for 
those quantities, and that those ‘hidden variables’ influence the outcome of experiments measuring those quantities. 
Scripture appears to support the latter view. In the last few decades there have been many experiments trying to test 
which view is correct. They rely on a famous theorem by John Bell, called the Bell inequalities, to determine whether hidden 
variables exist or not. The conventional view violates the inequalities; Bell thought he proved that the minority view does 
not. Here I show that Bell’s proof restricted the possibilities for hidden-variable theories and therefore does not apply to 
all such theories. I offer a counterexample, a hidden-variable model which gives the same correlation between widely 
separated detectors as orthodox quantum theory. This hidden-variable model violates Bell’s inequalities, in just the same 
way as conventional quantum mechanics violates them. Recent experiments showing a violation of Bell’s inequalities and 
conformity to standard quantum mechanics thus do not exclude the possibility of hidden variables. Therefore, the current 
alternative interpretation, ‘entanglement’ of particles, i.e. faster-than-light interaction between detectors, is not yet proven.
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of ‘reality,’ this predictability means that both particles 
have real (definite) momenta and positions before they are 
detected. That contradicts Bohr’s interpretation.

EPR did not comment directly on a related problem for 
Bohr, made clear by later authors: how could two detectors 
far enough apart not to interact nonetheless give correlated 
readings? J.S. Bell’s comments3 on some of Einstein’s other 
writings about EPR indicate that Einstein thought the cor-
relation between detectors would occur simply because 
each particle would maintain a definite trajectory (a definite 
momentum and position at every time) from source to detec-
tor, just as would be the case in classical mechanics.

In a letter to Einstein dated 7 June 1935, Erwin Schröding-
er proposed the term ‘entanglement’ to describe the cor-
relations between the two particles EPR described, and a 
few months later published a paper about it.4 The term has 
come into wide use in recent decades. The idea today is that 
the wave functions of two particles can sometimes become 
tangled up with each other at the source. Then the joint 
wave function spreads out in all directions like a spherical 
cloud as the (non-located) particles move apart. When one 
particle materializes in a detector, the entangled wave func-
tion instantly transmits the information (faster than light) 
to the opposite detector and instructs the other particle to 
materialize there.

Shortly after that, Bohr replied5 to the EPR paradox by 
suggesting that the very choice of apparatus at the detectors 
could somehow explain the correlation. Apparently, he was 
implying that if one chooses to measure momentum (or posi-
tion) at one detector, one somehow gets a correlated momen-
tum (or position) at the other detector. A half-century later, 
Bell found Bohr’s reply hard to understand and suggested 
that Bohr may have been simply rejecting (without proof) 
EPR’s premise of ‘no action at a distance.’6

In 1952 David Bohm introduced an interpretation of 
quantum theory using what he termed ‘hidden variables’.7 
He proposed that the quantum-mechanical wave function is a 
real field that would influence the motion of real particles, the 

particles having always a definite position, momentum, spin, 
and other characteristics. These quantities would be the hid-
den variables. In a companion paper,8 he devoted a section to 
discussing the EPR gedanken (thought) experiment. Interest-
ingly, Bohm did not appear to consider his hidden variables 
as explaining the correlations between the detectors. Instead 
he suggested the interaction occurs “instantaneously through 
the medium of the ψ-field [the wave function]”, which sounds 
like the present-day idea of entanglement.

In 1964, John Bell (figure 2) published an article9 about 
the EPR paradox that has become famous. He asserted that 
hidden-variable quantum theories can have certain qualities 
that could be checked experimentally. (He had just previ-
ously found that attempts to prove hidden variables impos-
sible, such as a famous theorem by John von Neumann, were 
flawed.)10 Many experiments have been done since then to 
test the existence of hidden variables. They all depend on the 
theorem Bell derived, in particular on several mathematical 
inequalities based on the theorem. The inequalities test the 
statistical correlations between two detectors located far from 
each other. Bell thought that all hidden-variable theories 
would obey the inequalities. In contrast, standard quantum 
theory would violate the inequalities. A recent experiment,11 
apparently without experimental loopholes, shows that the 
statistical correlation of its detector readings violates the Bell 
inequalities, and agrees with orthodox quantum theory. If all 
hidden-variable theories must indeed obey the inequalities, 
then the experiment would exclude hidden variables as an 
explanation for the correlations between detectors. The only 
other possibility so far suggested is that somehow each detec-
tor instantaneously interacts with the other one to produce 
the correlations, i.e. entanglement.

Bell’s Theorem

Bell used an example, shown in figure 3, like one given 
by Bohm and Aharonov.12 It depicts ‘a pair of spin one-half 
particles [such as electrons or protons] formed somehow in 

Figure 1. Niels Bohr (left) and Albert Einstein (right), December 1925 Figure 2. John Stewart Bell, FRS
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the singlet spin state [spins opposite each other] and moving 
freely in opposite directions.’ The particles can pass through 
Stern-Gerlach magnets (see Appendix B), beyond which 
detectors register either spin-up or spin-down counts (labelled 
+1 or -1 respectively) along the magnet axes a and b, each of 
which is a unit vector in various possible directions in a plane 
normal to the line from source to detector. Bell explained that 
if a is aligned with b, both quantum theory and experiment 
have the two particles having opposite spins in the detectors.

Next, Bell labelled the detector results A and B, and 
assumed that they are determined completely by the magnet 
axes a and b and a set λ of hidden variables:

A(a, λ) = ±1 , B(b, λ) = ±1 	 (1, 2)

Bell said that some of the set of hidden variables could 
be in common with both particles, but others of the set 
could be unique to each particle/detector. Note that A and B 
are step functions, not able to have any values between +1 
and -1. Then Bell defined a correlation function P(a, b) (see 
Appendix C), which gives a number between +1 and -1 that 
tells how strongly the readings of detectors 1 and 2 should 
be related, depending on the relative orientations of a and b:

P(a,b) = ∫ ρ(λ) A(a,λ) B(b,λ) dλ,	 (3)

saying ̒ρ(λ) is the probability distribution of λ.̓ Bell com-
pares eq. (3) to the correlation function that orthodox quan-
tum mechanics would predict for the singlet state (opposite 
spins):13

P(a,b) = ‹σ1 · a  σ2 · b› = – a · b = – cos θ	 (4)

In this expression only, σ1 and σ2  are the quantum-
mechanical spin operators for particles 1 and 2, respec-
tively, and θ is the angle between a and b. Bell then goes on 
to show that there is no way we can arrange for A and B in 
eq. (3) to depend on the set of hidden variables λ in order 
to get the right-hand side of eq. (4). The underlying reason 
for this impossibility turns out to be that A and B are step 
functions. Bell concluded that there should be a difference 
between the experimentally measurable correlation functions 
for hidden-variable theories and orthodox quantum mechan-
ics. He thought all hidden-variable theories should obey his 
inequalities, whereas standard quantum theory violates the 
inequalities.

A hidden-variable model that is a counterexample

Bell thought his ansatz (initial assumption), equations 
(1, 2) with step functions, was a correct representation of all 
hidden-variable theories. I suggest that this does not cover 
all the possibilities for hidden variable theories. Below is a 
counterexample. It shows at least one hidden-variable model 
that gives a correlation function identical to that of orthodox 
quantum mechanics, P(a,b) = – cos θ. So the model would 
violate the Bell inequalities, just as standard quantum theory 
does.

Imagine that each of the two particles in figure 3 has a 
definite location, momentum, trajectory, and unit spin vec-
tor σ as projected onto the plane of its detector. The source 
produces opposite spins in the two particles. Each particle is 
accompanied by waves that make it impossible to measure 
all these things precisely and simultaneously. The spin of 
each particle remains oriented in a particular direction all 
along its trajectory.

As figure 4 shows, the spin vector σ1  of particle 1 is at an 
angle of λ with respect to the Stern-Gerlach magnet axis (see 
Appendix B) for detector 1, vector a. The spin σ2  of particle 
2 is at angle of λ + π + θ with respect to the magnet axis of 
detector 2, vector b. Each emission of a particle pair from 
the source produces a specific value of λ which remains the 
same all the way to the detector, but over many events λ can 
have any value between 0 and 2π. The correlation between 
detectors is produced by the source, with each particle retain-
ing the spin information all along its path to the detector.

Here are the key differences I am introducing in this 
model. First, let us say that A and B are not step functions, but 
rather smoothly varying continuous functions whose signs 
give the reading (+1 or −1) of each detector:

Reading of detector 1 = sign(A)	 (5)

Reading of detector 2 = sign(B)	 (6)

(As Bell points out for a similar use of the sign function, 
the fact that the sign is undetermined for A or B being exactly 
zero makes no practical difference, since the probability of 
getting those exact values is zero). Using the sign function 
reflects the experimental observation that Stern-Gerlach mag-
nets align the output spins with their axes, regardless of the 
initial spin directions of particles as they enter the magnets. 

Figure 3. Bell’s gedanken (thought) experiment has a source emitting two spin one-half particles (such as electrons or protons) in opposite directions. The 
spins, σ1 and σ2, are opposite each other. The particles can pass through Stern-Gerlach magnets (see Appendix B) whose axes a and b can be oriented 
in any direction in planes perpendicular to the line between 1 and 2. The detector pairs remain lined up with the magnet axes. In Bell’s analysis, A and B 
are step functions representing the outputs of the detectors, either +1 or −1.
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That is, the output spins are either up or down with respect 
to the magnet axes. The amplitudes of A and B do not matter; 
they can be chosen for convenience. All the above replaces 
Bell’s ansatz, equations (1, 2), with this one:

A(a, λ, α) , B(b, λ, β)	 (7, 8)

The main difference is that A and B are now continuous 
functions. A minor difference is that I have broken out from 
the set λ two subsets, α and β. These are the hidden vari-
ables that are unique to detectors 1 and 2, respectively. For 
example, α and β might specify just where and how a par-
ticle enters each detector. The symbol λ now represents the 
subset (in this case a single parameter, namely spin) of the 
hidden variables that both particles have in common. That 
is, λ travels with the particles. Turning now to the correlation 
function of eq. (3), Appendix C derives the function ρ(λ) for 
this situation. It is:

ρ(λ) = 1
π 	 (9)

This value for ρ(λ) turns out to normalize the correlation 
function, which we can now write in this form:

P(a,b) = 1
π ∫

2π

0 dλ –—–A(a, λ, α)    –—–B(b, λ, β) 	 (10)

The bars represent averages over the variables α or β, 
respectively. For this example of a hidden-variable depen-
dence, I choose A and B to be such that the averages are:

–—–A(a, λ, α)  = σ · a	 (11)
–—–B(b, λ, β)  = – σ · b	 (12)

This dot-product dependence is similar to that for fields 
in a polarized light beam transmitted through an analyzing 
filter. Figure 4 shows that the dot products in eqs. (11) and 
(12) depend on λ as follows:

σ · a = cos λ	 (13)

σ · b = cos (λ + θ)	 (14)

Using eqs. (11) through (14) in eq. (10) gives:

P(a,b) = – 1
π ∫

2π

0 cos λ cos (λ + θ) dλ	 (15)

Evaluating the integral14 gives the correlation function for 
this hidden variable model:

P(a,b) = – cos θ	 (16)

This is the same as the result from orthodox quantum 
theory, eq. (4). That means this hidden-variable model would 
violate the Bell inequalities in just the same way as orthodox 
quantum mechanics violates the inequalities.

Conclusion

My counterexample shows that Bell’s proof applies to 
only a subset of all possible hidden-variable theories. This 
means that experiments showing the correlation function has 
the orthodox form (–cos θ) do not disprove the possibility 
of hidden variables. Thus we should not yet conclude that 
entanglement and instantaneous interaction are realities. It 
could be that correlations between detectors are merely due 
to information imparted at the source and preserved in transit 
to the detectors. In retrospect, that seems to be a much less 
extraordinary explanation than faster-than-light interaction 
between particles alleged to be entangled. After all, it is mere-
ly Bohr’s interpretation (called the Copenhagen interpreta-
tion) of quantum data which suggested that an undetected 
particle has no specific trajectory and therefore can carry 
no information in flight. Einstein, of course, would be glad 
to hear that Bohr has not yet been validated by experiment. 
And if it is true that Bell originally hoped hidden variables 
would prove to be reality, he might have been glad to hear 
that his theorem has a loophole.

Appendix A: The de Broglie–Bohm causal 
interpretation of quantum mechanics

Einstein never presented an explicit formulation of his 
idea that a particle should always have a definite position, 
momentum, and trajectory. One of the founders of quantum 
mechanics, Louis de Broglie, presented a paper with such 

a formulation at the 1927 Solvay con-
ference. He called it the ‘pilot-wave’ 
theory, in which real waves would 
guide real particles. He later called it 
‘incomplete and diluted’, and objec-
tions to it at the conference by Einstein 
and others caused him to set it aside. 
But he later returned to the theory, 
added much to it, and in 1960 pub-
lished a book about it.15 A little before 
that, David Bohm had published his 
work with similar ideas.16 For the next 
three decades, a minority of physicists 
extended these ideas and collected 
them into a unified theory.17Figure 4. Orientations of spins (σ1, σ2), and magnet axes (a, b)
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The basic idea is that particles always have a definite 
location and trajectory, and that they are accompanied by 
waves which are real, not mathematical constructs. (I add 
to the theory that the particles are the source of the waves.) 
The waves are able to influence the motion of the particles 
in a way that the theory specifies exactly. For example, in the 
famous ‘two-slit’ experiment, the particle goes through only 
one of the slits, but the waves go through both slits. Between 
the slits and the screen, the waves form an interference pat-
tern. Depending on exactly where it goes through a slit, the 
particle will follow a path determined by the interference 
pattern. When it hits the screen, it contributes to an interfer-
ence pattern on the screen that gradually becomes clear as 
more and more particles go through the slits. Theorists have 
plotted the sheaves of particle trajectories that result from 
the interference.18,19

Appendix B: The Stern–Gerlach experiment

Figure 5 shows the essentials of a well-known experiment 
done in 1922 by Walther Stern and Otto Gerlach.20

A silver atom has one unpaired electron in its outer elec-
tron shell, so it has the spin and magnetism (like a tiny 
bar magnet) of a single electron. Before they enter the gap 
between the big bar magnets, the spins of the silver atoms 
are oriented randomly. When an atom enters the gap, the 
quantum-mechanical waves accompanying the atom force 
the main part of its spin to be aligned either up (with the 
field) or down (against the field). The non-uniformity of the 
field then pulls the spin-up atoms upward and pushes the 
spin-down atoms downward. So the silver beam splits into 
two parts as in item 5 of the figure. Without the quantum-
mechanical waves, the spins of the atoms in the gap would 

remain oriented randomly, and the beam would be a continu-
ous sheet between up and down, as in item 4, the classically 
expected result. The magnet axis a (or b) in figure 3, figure 
4, and the main text, is shown in item 6 of figure 5.

Appendix C: The correlation 
 function and ρ(λ) for this case

From Bell’s writings, it was difficult for me to decide what 
exact form for the correlation function my model should 
use, in particular what numerical value I should use for his 
function ρ(λ) in eqs. (3) and (9).  For example, he says: ‘Let 
the correlation function be defined as the mean value of the 
product AB.’21 Is there not an already agreed-upon defini-
tion? Then in the following equation he does not show ρ(λ) 
at all. Is it 1, or is it subsumed in the averaging operation? 
So I decided to go for help to the branch of mathematics 
that developed the correlation function.  Statistics textbooks 
define the correlation (in earlier texts called the ‘correlation 
coefficient’ and in this paper labelled P) between two vari-
ables x and y as:22

P(x,y) =  1
n-1 ∑ ( xi – -x

sx           ) ( yi – -y
sy           ) 	 (C1)

All the summations Σ here are for i =1 to n. The values xi 
and yi are the ith measurements of x and y in a set of n such 
measurements, x and y are the means of xi and yi, and sx and 
sy are the standard deviations of xi and yi. For x, the standard 
deviation is:23

sx = √
———

  1
n-1 ∑ (xi – x)2 ,	 (C2)

and similarly for y. For my case below, it turns out that the 
means x and y are zero. Using those values and eq. (C2) 
applied to both x and y in eq. (C1) gives:

Figure 5. Stern–Gerlach experiment. Silver atoms travelling through a non-uniform magnetic field, and being deflected up or down depending on their 
spin: (1) furnace; (2) beam of silver atoms; (3) non-uniform magnetic field; (4) classically expected result; (5) observed result; (6) magnet axis, a (or b).
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∑ xi  yi 
P(x,y) =	 (C3)

√
–———
∑ xi2 ∑ yi2 ,

The factors 1/(n–1) all cancel out. Now use eqs. (11) – 
(14) to substitute the variables of my model for x and y:

x =	 (C4)–—–A (a, λ, α) = cos λ ,

y =	 (C5)–—–B (b, λ, β) = – cos (λ+θ)

Now let us specify n values of λ in order from 0 to 2π and 
call them λi. They are spaced a small angle Δλ from each oth-
er, and we have Δλ = 2π/n. That gives us n values of x and y:

xi = cos λi,    yi = –cos (λi + θ)	 (C6, C7)

Notice that the means of xi and yi are zero, as I said below 
eq. (C2). Put eqs. (C6) and (C7) into eq. (C3), and multiply 
all the sums by Δλ (keeping the ratio the same), to get:

–∑ cos λi  cos(λi+θ) Δλ 
P(x,y) =	 (C8)

√ ∑ cos2 λi Δλ ∑ cos2 (λi+θ) Δλ ,

Now take the limit of each sum as Δλ → 0 and n → ∞. 
That changes each sum to a definite integral:

– ∫0

2π
 cos λ cos(λ+θ) dλ 

P(a,b) =	 (C9)

√ ∫0

2π
 cos2 λ dλ ∫0

2π
 cos2 (λ+θ) dλ 

I have replaced x and y with a and b because λ, α, and β 
are integrated out of the result. Evaluating the two integrals 
in the denominator yields π for each one. That makes eq. 
(C9) become:

P(a,b) = – 1
π ∫

2π

0 cos λ cos (λ + θ) dλ	 (C10)

This is identical to eq(15) in the main text, thus confirm-
ing eq. (9):

ρ(λ) = 1
π	 (C11)

This result contradicts Bell’s assumption that ρ(λ) should 
be ‘the probability distribution of  λ,’ for in that case ρ would 
be 1/2π. Instead, the statistical definition of the correlation, 
eq. (C1), shows that ρ is:

ρ = 1/(SASB) ,	 (C12)

where sA and sB are the standard deviations of the distribu-
tions A and B. For Bell’s choice of step functions for A and 
B, this would still give ρ = 1/2π. But for my choice of A and 
B in eqs. (11) and (12), ρ is 1/π.
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