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Quantitative scientific data needs to be scrutinized by 
a subject matter expert (SME) for plausibility before 

and after mathematical tools are applied and conclusions are 
published. Erroneous data can lead to flawed mathematical 
equations of which decision-makers may not be aware. 
Correcting data requires prior knowledge, and cleaning up 
datasets can be quite subjective despite the best intentions.

In the past, when I worked in data science, I often 
encountered outliers that were clearly inconsistent with 
my empirical mathematical models. In many cases it was 
possible to trace the error back to the data sources, where 
explanations included, for example, a decimal point that had 
been accidentally shifted. But what about the cases where 
we doubt the validity of some data but have no means to 
decide if it is wrong?

In the literature, we often encounter examples of dates 
being recalibrated because the researcher believed more 
strongly in his or her presuppositions than in the data 
available. In bioinformatics, gene or protein sequences that 
disagree with phylogenetic relationships can be ignored 
or removed from the dataset. Is this dishonest, or simply a 
routine matter of data cleanup? This is an important question 
especially in those cases where the amount of data available 
is very limited.

There are many cases of important decisions relying on 
a small dataset. Examples include hominid fossils, amino-
acid-containing meteorites, putative pseudo-genes, tree-ring 
series to calibrate 13C ages, and so on.

Case study: glycine condensation

I recently examined some data from a paper published by 
Cronin et al.,1 and, like all data scientists, I have a compulsive 
need to ‘play with’ quantitative data. In this Nature Com
munications paper, the team determined the concentration 

Many important scientific conclusions are based on small datasets with considerable measurement error, especially in 
areas relevant to the origin of life debate. Including a few very inaccurate or miscategorized data values could produce 
seriously flawed reconstructions, chronologies or relationships. But removal of data (‘cleanup’) can also eliminate 
putative outliers which could invalidate a flawed model. Expertise is often subjective, with warring views producing 
seemingly compelling proof for their view. Choice of experiments to perform, prior beliefs and reasons for selecting 
specific mathematical treatments to apply are rarely communicated to the readers of professional papers. Especially 
problematic is when convictions are use to ‘massage’ the data, leading to results then argued to demonstrate the validity 
of the prior belief. 

Clean-up and analysis of small datasets can 
distort conclusions
Royal Truman

and size of poly-glycine using dehydration–hydration cycles. 
Parameters tested included initial concentration of glycine 
(Gly, 10–4–10–1 M), dehydration times (1–96 h), number 
of dehydration cycles (1–4), temperature (90–130°C), pH 
(2.15–10), and concentration of NaCl (0–1 M).

This is useful data because it can help predict the largest 
Glyn oligomer formed, using optimal settings. This is 
relevant for origin of life research, which hopes to account 
for a natural origin of large peptides. After calculating the 
theoretically largest Glyn that could form, one could then 
extrapolate to more plausible abiotic conditions. Indeed, 
I concluded that the largest Glyn would have been much 
smaller than formed under optimized laboratory conditions.2

While analyzing the data from the Cronin et al. paper, 
I noticed that I was instinctively applying judgment when 
evaluating the reported data and my mathematical fits. So, is 
bias always wrong? I decided to share some simple examples 
from my own modus operandi to illustrate several points that 
are relevant to the origins debate. This led to the observations 
shown in table 3.

I. Using data as is, without data transformation or cleanup

The maximum concentration of Glyn having n > 13 
could be estimated by extrapolation using the data in 
table 1.1 Higher concentrations resulted after two cycles, 
but additional cycles led to chemical decomposition, so I 
decided to examine the data for cycle 2, figure 1.

Plotting the data shows this will be easy to model, 
figure 1A. In figure 1B I used a logarithmic function. 
Suppose one believes there are compelling reasons why 
a logarithmic relationship must be correct, and suspect 
the reported concentrations for Gly12 and Gly13 that do not 
follow this relationship very well might be flawed, figure 
1B. Visual inspection shows Glys12 and Glys13 fall above 
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Table 1. Oligomer concentrations after number of hydration–dehydration cycles 
at 130ºC after 24 h. Yields calculated as a percentage of the glycine (Gly) starting 
material.1

Oligomer Cycle 1 Cycle 2 Cycle 3 Cycle 4

Gly2 13.96 10.26 9.42 8.36

Gly3 10.4 7.7 6.46 5.41

Gly4 7.61 5.95 5.11 4.41

Gly5 5.11 4.23 3.53 3.07

Gly6 3.64 3.71 3.37 3.03

Gly7 1.91 2.07 1.94 1.67

Gly8 1.91 2.05 1.07 0.64

Gly9 1.09 1.3 0.77 0.66

Gly10 0.81 0.93 0.81 0.74

Gly11 0.2 0.32 0.28 0.26

Gly12 0.4 0.56 0.4 0.38

Gly13 0.11 0.34 0.3 0.25

the empirical curve, whereas Gly5–
Gly11 all fall below the fitted curve. I 
re-examined the IP-HPLC traces and 
concluded that considerable doubt 
could be raised about the accuracy of 
the concentrations reported for Gly12  
and Gly13.

I regenerated the logarithmic 
curve with the cleaned-up dataset (i.e. 
lacking these two allegedly wrong data 
points). The correlation coefficient R² 
jumped from 0.979 (figure 1B) to an 
impressive R² = 0.991, based on a new 
regression equation 14.028–5.814ln(n). 
This could be correctly or mistakenly 
provided as evidence that glycine 
oligomers larger than n = 12 will not 
be produced under these conditions, 
since replacing n with a value ≥ 12 
leads to a negative % (observation 1).

Suppose instead that we trust all the 
data and now generate a third order 
polynomial function, Figure 1C, with 
R² = 0.995, which seems compelling 
and permits extrapolation to higher 
values of n. However, a negative 
% yield results for n ≥ 15, which 
is physically absurd and indicates 
the fitted equation should not be 
extrapolated to high Glyn values. But, 
in other studies, it is possible an analyst 
would have no reason to suspect he or she had overfitted the 
data set (observation 2). As an alternative example, suppose 
a fourth order polynomial would be offered, also having 
R² = 0.995. Now predicted values for n ≥ 14 are no longer 
negative, but begin to increase steadily. Since the reported 
% yield of Gly13 was greater than of Gly11, this might seem 
mathematically plausible. But a chemist would know this 
is not reasonable. In cases where the analyst lacks a deep 
understanding of the underlying physical reality, seemingly 
excellent equations offered could make nonsense predictions.

Performing data transformations

A quarter of the y values of the dataset are less than a 
tenth the size of the largest value, figure 1A. The regression 
algorithm minimizes the square of the difference between 
predicted and reported data, so the largest concentrations 
will dominate the resulting empirical equation. This is fine 
if the goal is to predict yields of Glyn for small values of n, 
but here the opposite is true; we would like to extrapolate 
to n ≥ 14. Therefore, I took the natural log of the y values 
and plotted them against n, figure 2A. The new linear 
regression equation has an R2 = 0.961, which is not as high 
as obtained before (figures 1B and 1C). But now there 

will be better agreement between measured and predicted 
values in the larger n region. Importantly, this confirmed 
that, when extrapolating to n ≥ 14, one no longer obtains 
negative yields nor increasing yields at high values of n 
(observation 3).

The plot in figure 2A makes clear that data point Gly11 
is suspect. It makes no sense for the yield of Gly11 to be 
less than for Gly12 and about the same as Gly13; see table 
1. Ideally, additional laboratory measurements could be 
performed to resolve contradictions, but often this now 
instead requires behind-the-scenes decision making. Data 
delivered for analysis is often final.

Perhaps the plot in figure 2A should not be perfectly linear 
but display a slight downward trend. And since we wish to 
extrapolate to larger values of n, we are reluctant to forfeit 
our end point at Gly13. If we exclude the Gly12 data point, 
we obtain a miniscule increase in R², figure 2B. Suppose we 
retain Gly12 and exclude Gly11 instead, since figure 2A reveals 
this to be the obvious outlier. This time the improvement in 
R² is rather dramatic (figure 2C), and using the equation leads 
to very reasonable-looking predictions, figure 2D. (There 
are statistical principles that can be used to decide which 
outliers are statistically significant based on assumptions 
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of the probability distribution of the errors, but this is not 
our topic here.) The message is simply that researchers 
routinely exclude data that they believe are flawed, and this 
is rarely apparent to those reading the reports. Sometimes 
data exclusions should have been done, but other times not.

The equations in figures 2A, B, and C were used to predict 
values for Gly14 to Gly20, table 2.

Selecting one data point or the other as being an outlier 
produced a significant relative difference in predicted yield 
of Gly20 (table 2). This effect can be especially significant 
when large outliers are involved. Major conclusions could be 
communicated that are flawed because of incorrectly excluded 
data (observation 4). This becomes problematic when the 
outliers are chosen for removal in a way that strengthens what 
a researcher believes or wishes to be true. If one wishes to 
emphasize that large Glyn won’t form, then removing Gly12 is 
a temptation, whereas if one wishes to claim large oligomers 
are not so difficult to produce naturalistically, then removing 
Gly11 would be the option of choice.

Selective choice of experiments to perform

Another example of data bias arises in the selection of 
experiments to be conducted. In the rich amount of data 
available in ref. (1), we find the data shown in figure 3. 
Once the cycle time (i.e. duration of the dehydration phase) 
increases to longer times, chemical decomposition occurs 
that decreases the % yield of oligomer. This is shown for 
110°C and 130°C.

Suppose only experiments at 90°C or less were chosen 
for analysis, knowing that chemical degradation would be 
a problem. No malice need be imputed. The researchers 
could simply be exercising good judgment to use their time 
and funding wisely. However, based on the now incomplete 
picture, their readers or sponsors might surmise that 
continually increasing the dehydration time would steadily 
increase the yield of oligomers. Based on the green line 
in figure 3, there would be no reason to suspect otherwise 
(observation 5).3

Figure 1. % yield glycine oligomers of size n = 2–13. A. Plot using all the data. B. Fitting of ln (% yield) vs Glyn. C. Modelling % yield using a third order 
polynomial equation. D. Modelling % yield using a fourth order polynomial equation.
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Figure 2. Analysis of the same data used in figure 1 after transforming to the ln of the % yield glycine oligomers. A. New regression equation using all 
the data. B. New regression equation after excluding data point Gly12. C. New regression equation after excluding data point Gly11 D. Predicted values 
for n 14–20 using the regression equation from 2C.

The intention of this research was to demonstrate that 
larger peptides could form in water than believed so far, 
lending more credibility to a natural origin of proteins. But 
why would the large peptides formed no longer remain 
exposed to degrading heat for much longer than 100 h? The 
cycle durations shown in figure 3 could have been extended 
to ensure the reader does not overlook what would have 
occurred naturally. For example, experiments with cycle 
times out to 500 h at 130°C would demonstrate that larger 
peptides would be almost entirely degraded.

Homochirality

There are many variants of this kind of bias. Which topic 
to research is an example. There is a plethora of papers 
addressing how the origin of biochemical homochirality 
might be solved naturalistically. Wildly overstated abstracts 
and summary statements, coupled with irresponsible 
journalistic sensationalism produces a general feeling that 

“someone has found a plausible solution, or with all the 
promising ideas one will be found” (observation 6). They 
hope that readers will forget that they said the same thing 
before; now they tacitly admit that the previous claim is no 
longer believed.

Suppose a comparable amount of effort was being 
devoted to finding all the experimental and theoretical 
ways amino acids in free or bound form could racemize. 
The flood of papers would cement the consensus that amino 
acid racemization is how nature works. In fact, that is why 
amino-acid racemization is widely used as a dating method.

Ancient biomaterials

Few researchers deliberately search for biological remains 
in fossils allegedly millions of years old or measure 14C in 
diamonds which also allegedly formed millions of years ago. 
Neither are they focusing resources to examine alternative 
dating methods which could indicate the earth or life on 
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Earth might be recent. These are obvious research projects 
young-earth creationists would think of and wish to carry 
out. Clearly, more Bible-believing students need to become 
scientists.

Discussion

I cannot think of any paper dealing with origin of life 
topics having measured laboratory data where I did not wish 
that specific other tests would also be conducted. Given 
the dismayingly growing number of cases where important 
scientific and medical experiments cannot be validated, 
it is becoming ever more important to critically question 

how conclusions are being reached 
and communicated.4,5 Those working 
with other premises will often think of 
alternative ways of interpreting data, 
or experiments leading to entirely 
different insights.

There are some subtleties to 
observation 5. In the example in figure 
3, the sum of oligomers was reported 
but the goal of the project was to find 
the best parameter settings to produce 
the largest Glyn. Larger oligomers were 
produced in mere fractions of a percent, 
so a sum of all oligomers is not truly 
addressing the question of interest. It is 
absurd to imply that pure amino acids 
would be present at 130°C somewhere 
for just a few hours before fleeing to 
the safety of much colder water to 
avoid degradation. Environments 
of much lower temperatures where 
decomposition would be minimized 
over time are more realistic, so the 
obvious experiments would be to 
determine Glyn distribution at much 
lower temperatures. This would ensure 
that the correct facts are available to 
reach well-reasoned conclusions.

Observation 7 addresses the use of 
experimental details which camouflage 
facts that should be more honestly 
emphasized. An example is the use 
of glycine for condensation studies 
to show how large peptides might be 
formed naturalistically.6 Glycine is the 
only proteinogenic amino acid that is 
not chiral, so is unable to form D- and 
L-enantiomers, and thus racemize. 
Poly-glycines cannot produce folded 
proteins. Another example involves 
the use of average dates obtained from 

different dating methods on the same sample to claim good 
agreement, whereas the range of values obtained for the same 
sample could be so great that serious doubt about the alleged 
agreement should exist. For example, one could exclude 
a particular measurement or two and the average values 
suddenly no longer agree at all. I often encounter published 
tables of data where, for each row, one reads ‘average of n 
measurements’, where n is variable. Which measurements 
were excluded and why is rarely explained.

Unfortunately, there are also examples of unethical bias. 
Data obtained that contradicts the researcher’s thesis might 
not be reported, distorted, or downplayed (observation 8). 
It might be excluded entirely from the final report or could 

Table 2. Predicted values for Gly14 to Gly20 after excluding one or no data points from the dataset. 
Yields calculated as a percentage of the Glycine (Gly) starting material.

No. of residues, n Using all the data Without the  
Gly12 data point

Without the  
Gly11 data point

14 0.23 0.22 0.28

15 0.17 0.15 0.21

16 0.12 0.11 0.15

17 0.089 0.080 0.11

18 0.064 0.057 0.084

19 0.047 0.041 0.062

20 0.034 0.029 0.046

Figure 3. Three temperatures were chosen to experiment with. By avoiding other conditions to 
test and report, attention is not drawn to results inimical to the researcher’s goals.
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Table 3. Insights on how bias affects analysis and reporting of data

No. Observations

1 Presuppositions guide model building and which data to retain. Contradictory data might be wrong but should be reported.

2
Excellent mathematical fits to a dataset are no guarantee that extrapolations will be accurate. Variables not integrated in the model, 
or inadequately so, can lead to bad predictions.

3
Analysts often transform the original data for mathematical reasons. The consequences of the pre-processing are rarely communi-
cated to others.

4
Excluding an unexpected result from consideration could prevent a new discovery. Sometimes a strong mathematical relationship 
results because key points are discarded. Identifying which data is erroneous has a big impact when the dataset is small. It is usually 
easy to find a reason for excluding a data point. However, none of the data which conform to expectations are challenged.

5
Experiments to perform are based on presuppositions and a desired outcome. For the non-specialist in the subject area this creates 
the impression that only those outcomes will occur. Parameter values are often selected near the best-case scenario. These opti-
mized experiments establish a pattern in the mind of the reader as to what is expected to occur.3

6
Researchers select topics to explore. For example, who would write a research proposal for funding by the US National Science 
Foundation to find ways radioactive dating could lead to a false illusion of deep time?

7
Results can be reported in aggregated manners which ignore the uncertainty in measurements. For example, older values might 
reflect better what a researcher believes is true than newer measurements. Justifications are easy to find (“it has been contaminated 
since the former measurements”), so average values could simply be reported.

8
Biases can arise when the research project was funded by an entity with a strong agenda. Reporting ‘bad’ data along with the ‘good’ 
results could make the research team look inept and jeopardize further funding and publication.

be presented as a rare curiosity of allegedly no significance. 
Being inimical to the researcher’s goals, little effort is 
invested to determine if the outlier is reproducible and, if 
so, what causes it. 

Conclusions

Data clean-up and questioning which data could be 
flawed are a necessary part of research. Two kinds of errors 
could arise: data gets included in the models that should not 
have been or data gets excluded that should not have been. 
Presuppositions can be so strong that contradictory data is 
simply dismissed. An example is the view that only naturalist 
explanations are real, and these can explain all aspects of life. 
This is an assumption Dr Sivanesan has criticized in depth 
in his recent book.7

Using biased data clean-up to ‘prove’ a cherished 
belief can lead to circular reasoning. For example, if our 
presupposition is that a logarithmic function reflects the 
true underlying physics (figure 1B), and we remove the two 
rightmost values (or correct them in some post-facto manner), 
it would be incorrect to then use this new dataset and a new 
logarithmic fit to ‘prove’ Glyn cannot be produced above a 
certain size. The origin of life literature is replete with this 
kind of error. Data are recalibrated or dismissed according 
to deep-time assumptions and this new ‘data’ is then used to 
claim that the facts speak for an ancient earth.
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